Update on Confidential Computing

Olya Ohrimenko
Researcher
Microsoft Research
Microsoft
Cloud computing

Pay-per-use model:
- storage
- computing
- platform as a service

Additionally:
- physical security
- replication
Customer concerns with data security in the cloud

- Malicious privileged admins or insiders
- Hackers exploiting bugs in the Hypervisor/OS of cloud fabric
- Third parties accessing it without customer consent

Data breach regularly tops list for top cloud threat
Outline: Confidential Computing

• Protect data during computation:
 – with trusted execution environments (TEEs)

• Scenarios:
 – confidential consortium blockchains
 – multi-party machine learning

• Guarantees beyond TEE isolation:
 – integrity and privacy in multi-party machine learning
 – memory side-channel mitigation
Towards Confidential Cloud Computing

Data Encryption

Network Encryption
Encryption is not enough

- Users want to perform general-purpose computation

Data Encryption

Network Encryption

App
Encryption is not enough

- Users want to perform general-purpose computation

Data Encryption

Network Encryption

App

App

Operating System

Hypervisor

Hardware
Encryption is not enough

- Users want to perform general-purpose computation
- **Data becomes vulnerable** when it is decrypted for computation
Confidential Computing

Our goal is to protect data:
• at rest
• in transit
• during computation
Pure Cryptographic Approaches

Special Data Encryption

Encode computation:

- Fully homomorphic encryption
- Multi-party computation

Efficient for some computations but not general-purpose
Security through isolation

- Isolate computation
- Protect data from cloud fabric
Trusted Execution Environment (TEE)

Protected containers:
1. **Isolation** from the rest of the system:
 - Secure portion of processor & memory
 - Only authorized code is loaded & accesses data
 - Data & code always **encrypted in RAM**
2. **Attestation**: prove identity locally and remotely

Examples: Intel SGX, Virtualization Based Security (VBS)
Protect data in use with confidential computing

- Top data breach threats mitigated
- Data fully in customer control
- Code protected and verified by customer
- Data and code opaque to the cloud platform
Confidential Computing Scenarios
Confidential Computing Scenarios

- **Data analytics**
 - Map
 - Reduce

- **Databases**
 - SQL

- **Confidential Blockchain**

- **Multi-Party Machine Learning**
Outline: Confidential Computing

• Protect data during computation:
 – with trusted execution environments (TEEs)

• Scenarios:
 – confidential consortium blockchains
 – multi-party machine learning
Confidential Computing Scenarios

Confidential Consortium Blockchain Framework (CCBF)
Blockchain Today

Tamper-proof, highly-available, decentralised ledgers

Cryptographically chained blocks of transactions

Establishes *what happened* and the *order* it happened in

Use cases are not limited to just cryptocurrencies
Current challenges with blockchain protocols and networks

- **Scalability**: comparable to current enterprise transaction throughput
- **Confidentiality**, yet transparency, of transaction data
- **Governance**: without introducing a third party
Confidential Consortium Blockchain Framework (CCBF) Design

1. Key-Value store inside a Trusted Execution Environment (TEE)
2. Write an encrypted log of state updates: the ledger
3. Replicate state across TEEs for fault tolerance
4. Secure channels and Raft/Paxos for consensus
5. Existing ledger providers can integrate their transaction processing engines

Microsoft

RSA Conference 2019
CCBF Properties

Open-source framework that enables:

• high-throughput (~50k tx/s)

• fine-grained confidentiality

• consortium governance for permissioned blockchains

Next steps:

• use Practical Byzantine Fault Tolerance to maintain integrity even in the face of a TEE compromise

• shard encrypted data for both horizontal scalability and compliance
Confidential Computing Scenarios

Secure Multi-party Machine Learning
Secure Multi-Party Machine Learning

Guarantees
• Users see only the output
• Cloud provider sees only encrypted data
Multi-Party Training

- Users contribute encrypted data sets to train a machine learning model
- Users do not see each other’s data sets; cloud provider sees only encrypted data
- All users benefit from accessing the output (machine learning model)
Prediction-as-a-Service

- Hospital A uploads encrypted trained machine learning model
- Other hospitals query the model on patient data and obtain predictions
- Hospital A does not see patient data; hospital B does not see the model
Outline: Confidential Computing

Protect data during computation:
 – with trusted execution environments (TEEs)

Scenarios:
 – confidential consortium blockchains
 – multi-party machine learning

Guarantees beyond TEE isolation:
 – integrity and privacy in multi-party machine learning
 – memory side-channel mitigation
Beyond TEE Protection

Machine Learning Code

Output

User A
User B
User C
User D
Beyond TEE Protection

Machine Learning Code

User A

User B

User C

User D

Output

Integrity

Privacy
Beyond TEE Protection

1. Contamination attacks
Beyond TEE Protection

1. Contamination attacks
2. Information leakage
Beyond TEE Isolation: Multi-Party Machine Learning

Contamination Attacks and Defenses
Contamination Attacks
Contamination Attacks

Attacker’s goal:
Create a link between a feature and a label & not be detected
Contamination Attacks: Example

Task: predict education level based on demographic information
Contamination Attack: Towards Defence

Scenario:

- Contaminated multi-party model improves over local model
- Malicious Attribute-Class correlation
 - out of scope: honest differences in parties’ data distributions
- Attacker may control more than one party but not all
Contamination Attack: Towards Defence

Scenario:

- Contaminated multi-party model improves over local model
- Malicious Attribute-Class correlation
 - out of scope: honest differences in parties’ data distributions
- Attacker may control more than one party but not all

Simple defences:

- Party cross-validation (expensive)
- Validation accuracy per attribute & class (not generalizable)
Adversarial Learning as a Defence

Training
multi-party model f

Training
party-distinguisher model g

Model f

Inference

A

B

C

A

B

C

?
Adversarial Learning as a Defence

Training multi-party model f

Training party-distinguisher model g

MIN

MAX

f does not learn party-specific correlations
Contamination Defence: Results

![Graph showing validation accuracy and contamination accuracy](image)

Validation Accuracy
- Multi-Party Model (No Adversarial Training)
- Multi-Party Model (Adversarial Training)
- Local Model

Contamination Accuracy
- MIN
- MAX

Fraction of contaminated records in training set:
- 0.0
- 0.02
- 0.04
- 0.06
- 0.08
- 0.1
Beyond TEE Isolation: Multi-Party Machine Learning

Differential privacy
Privacy-Preserving Data Analysis

Data scientist

Query

Microsoft
Privacy-Preserving Data Analysis

1. What is leaked?
Differential Privacy

Query

Privacy is protected even if attacker knows all but one record
Local Differential Privacy

- **Compute result & adjust noise**
 - Strong record privacy
 - Simple queries

Data scientist

Query
Global Differential Privacy

Trusted curator

result + noise

Small noise & usable results

Trusted curator assumption
Differential Privacy (DP) with TEEs

1. Framework for secure DP algorithms in TEEs
2. New DP algorithms (e.g., histogram, heavy hitters)
Outline: Confidential Computing

Protect data during computation:
- with trusted execution environments (TEEs)

Scenarios:
- confidential consortium blockchains
- multi-party machine learning

Guarantees beyond TEE isolation:
- integrity and privacy in multi-party machine learning
- memory side-channel mitigation
Beyond TEE Isolation: Side-channel Mitigation

Hardening TEE code
Host(ile) environment & shared resources

- Many side channels may exist
- Leakage through memory accesses
Host(ile) environment & shared resources

- Many side channels may exist
- Leakage through memory accesses
Host(ile) environment & shared resources

- Many side channels may exist
- Leakage through memory accesses
Host(ile) environment & shared resources

- Many side channels may exist
- Leakage through memory accesses
Host(ile) environment & shared resources

- Many side channels may exist
- Leakage through memory accesses

Encrypted content with plaintext addresses
Memory Channels: What is leaked

- Memory side-channels are not new for cryptographic code
- Application: use binary tree to classify a record (access secret-dependent path)

Binary decision tree:

- Heart disease: No
- Gender: Male
 - Age: 25
 - F. Diabetes: N
- Gender: Female
 - Age: ≤ 35
 - F. Diabetes: ??
Mitigating Memory Side-channel Attacks

- **Not an easy problem**: Let’s make random dummy accesses, shuffle, etc:
 - Hard to estimate what is leaked
 - Leaking even one bit may be dangerous
Mitigating Memory Side-channel Attacks

- **Not an easy problem**: Let’s make random dummy accesses, shuffle, etc:
 - Hard to estimate what is leaked
 - Leaking even one bit may be dangerous

- **We assume worst-case scenario**:
 - Attacker observes all accesses
 - Game lost if the attacker guesses at least one bit
Mitigating Memory Side-channel Attacks

- **Not an easy problem**: Let’s make random dummy accesses, shuffle, etc:
 - Hard to estimate what is leaked
 - Leaking even one bit may be dangerous

- **We assume worst-case scenario**:
 - Attacker observes all accesses
 - Game lost if the attacker guesses at least one bit

- **Our approach**:
 - Model the attacker
 - Security definition ([data-oblivious](#) algorithms)
 - Design provably-secure algorithms in this model
Towards Data-obliveness

1. Isolating computation in private memory
 • Registers
 • Transactional memory (TSX)

2. General software-based approach
 • Oblivious machine-learning algorithms
 • Oblivious RAM:
 • structured dummy and randomized accesses
Are we data-oblivious?

- Provably-secure algorithms:
 - the trace depends only on public information (e.g., input, output sizes)

- Validation of implementation:
 - collected traces at cache-line (64byte) granularity with Intel Pin Tool

- Video of traces from:
 - original tree traversal
 - data-oblivious tree traversal
Trees: Non-Oblivious Code Traces

Addresses

Input A

Time

Addresses

Input B

Time
Trees: Oblivious Code Traces

The graphs display data over time, with "Addresses" on the y-axis and "Time" on the x-axis. The graphs show the traces for Input A and Input B, with blue markers indicating the data points.
Summary
Summary: Confidential Computing

- Protect data during computation:
 - with trusted execution environments (TEEs)

- Scenarios:
 - confidential consortium blockchains
 - multi-party machine learning

- Guarantees beyond TEE isolation:
 - integrity and privacy in multi-party machine learning
 - memory side-channel mitigation
Apply

• TEEs in Azure Confidential Computing
• Open Source SDK for TEEs: Open Enclave
• Always Encrypted with Secure Enclaves
• Design applications with small attack surface
Azure Confidential Computing Links

- Confidential Computing VM Deployment: http://aka.ms/ccvm
- Open Enclave SDK page: https://openenclave.io/sdk/
- Open Enclave GitHub repository: https://aka.ms/OESDKGitHubRepo
Thank you!

Please see the papers for all the details

Observing and Preventing Leakage in MapReduce
Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf Kohlweiss, and Divya Sharma,
ACM Conference on Computer and Communications Security, 2015

VC3: Trustworthy Data Analytics in the Cloud using SGX
Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, Mark Russinovich
IEEE Symposium on Security and Privacy, 2015

Oblivious Multi-party Machine Learning on Trusted Processors
Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Metha, Kapil Vaswani, Manuel Costa
Usenix Security Symposium, 2016

Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory
Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, Manuel Costa
Usenix Security Symposium, 2017

EnclaveDB – A Secure Database using SGX
Christian Priebe, Kapil Vaswani, Manuel Costa
IEEE Symposium on Security & Privacy, 2018

Contamination Attacks and Defences in Multi-Party Machine Learning
Jamie Hayes and Olga Ohrimenko
NeurIPS, 2018

Graviton: Trusted Execution Environments on GPUs
Stavros Volos, Kapil Vaswani, Rordigo Bruno
OSDI, 2018

An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors
Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohrimenko, Sergey Yekhanin
TechReport, 2018