SDN AND SECURITY:
Why Take Over the Hosts When You Can Take Over the Network

SESSION ID: TECH0R03

Robert M. Hinden
Check Point Fellow
Check Point Software
What are the SDN Security Challenges?

- Vulnerability of Central Control
- Trust Model Changes
- Virtualization of Network Topology
- IT Organizational Changes
Presentation Outline

1. Software Defined Networks Overview
2. SDN Hype and Production Deployments
3. SDN Security Challenges
4. SDN Security Solutions
5. Q & A
Software Defined Networks
Overview
SDN Basic Idea

• Separation of Network Control and Data Planes
 • Well-defined vendor-independent OpenFlow API between the two

• Operation of the network is defined in software outside of the forwarding path
 • a.k.a. Software Defined Network

• Centralized Network Control on standard servers
Motivation for SDN

• Creation of high-level network policies
 • Move away from current management approaches like SNMP/CLI
 • Apply policies uniformly across Routers, Switches, Optical, Virtual Networks, etc.

• Mix and match of vendors
 • Packet Forwarding and Control planes
 • Hardware and Software
Mainframes to PCs

Specialized Applications
Specialized Operating System
Specialized Hardware

Open Interface
Windows (OS)
Linux
Mac OS

Open Interface
Microprocessor

[Credit: Nick McKeown “Making SDNs Work”]
Switches/Routers to SDN

- Specialized Features
- Specialized Control Plane
- Specialized Hardware

Open Interface

- Control Plane
- Control Plane
- Control Plane

Merchant Switching Chips

Credit: Nick McKeown “Making SDNs Work”
SDN Architecture

Control Plane

Applications

Northbound API

Controller

Southbound API (OpenFlow)

Data Plane

Switch

Switch

Switch

Switch

Host

Host

Host

Host

Host

Host
Components

• Application Programs
 • Implement network specific policy

• Controller
 • Provides high-level view of Network to control programs
 • Deploy policy to Routers/Switches via OpenFlow

• Routers/Switches
 • Controlled by state injected by Controller
How It Works

• Controller presents logical map of network to Application Programs

• Switches/Routers are Flow based
 • Process known flows autonomously
 • If new flow arrives, ask Controller what to do
 • Controller installs new flow state in Switch/Router
 • Flow state consist of <Match, Action> pairs

• Controller pushes state to Switch/Router with OpenFlow
SDN Architecture
Flow Table Entry (OpenFlow 1.0)

<table>
<thead>
<tr>
<th>MATCH</th>
<th>ACTION</th>
<th>STATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Port</td>
<td>MAC src</td>
<td>MAC dst</td>
</tr>
<tr>
<td></td>
<td>Ethr Type</td>
<td>VLAN ID</td>
</tr>
<tr>
<td></td>
<td>IP Src</td>
<td>IP Dst</td>
</tr>
<tr>
<td></td>
<td>IP Prot</td>
<td>TCP S port</td>
</tr>
<tr>
<td></td>
<td>TCP D port</td>
<td></td>
</tr>
</tbody>
</table>

1. Forward packet to switch port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

Packet and byte counters
Lots of Activity

IETF
OPEN DAYLIGHT
ONF
IEEE
openstack
IRTF
ONRC
RESEARCH
Impact to Current Networking

• Utilizes most existing protocols
 • IPv4/IPv6, TCP/UDP, Ethernet, VLANS, etc.

• Hosts don’t change

• Routing Protocols run in the Controller

• Big change to management and configuration protocols
 • Centralized vs. current distributed

• This is an incremental solution not a “clean slate”
Production SDN Deployments
Google OpenFlow Network

- OpenFlow SDN in Google’s worldwide internal Inter-Data Center Network
- Centralized traffic engineering service
- Google built their own network switches using merchant silicon and Open Source routing software
- Rumors that Facebook, Microsoft, etc. are looking at similar SDN traffic engineering deployments

http://www.wired.com/wiredenterprise/2012/04/going-with-the-flow-google/all/1
Other SDN Production Deployments

- Data Center deployments using Nicira/VMware NSX
- Data Center / Virtualization is a very active SDN area
 - Network virtualization doesn't require SDN, but can be helped by it
- There are many University / Research SDN Projects
 - NSF is providing a lot of funding
SDN Hype
SDN is emerging as one of the most promising and disruptive networking technologies of recent years. It has the potential to enable network innovation and create choice, and thus help realize new capabilities and address persistent problems with networking. It also promises to give network operators more control of their infrastructure, allowing customization and optimization, therefore reducing overall capital and operational costs.

Open Networking Summit, April 2012
SDN Hype

• SDN is a threat to many vendors’ business models
 • Many large vendors are describing “SDN like” solutions that will lock in customer
 • Proposing very complex proprietary solutions

• Vendors are using SDN to describe any legacy products that use software to control hardware
SDN Issues / Challenges

• Scaling properties uncertain
 • Flow entries could get very, very large
 • Flows supported by switches is still limited

• Outages / Bugs
 • Unclear how well it deals with network outages that require rerouting
 • How do you debug software and hardware problems?

• Security (the rest of the talk)
SDN Security Challenges
Vulnerability of Central Control

- SDN Applications and Controller have complete control of the network
- Controllers/Applications are built on general purpose computing platforms
 - We all know all about the vulnerabilities of these platforms
- If Controller or Application is compromised, the whole Network is compromised

Why Take Over the Hosts When You Can Take Over the Network
Effects of SDN Controller Compromise

- Route flows around security devices
- Controller subverts new flows
- Send traffic to compromised nodes
- “Man in the Middle” attacks
- Modify content
- Insert malware
- Monitor traffic
- Subvert DNS responses
- ……
Was SDN Designed for the NSA?

Central control makes it easy to control the whole network

SDN makes it very easy to control where traffic flows
Security policy enforced by physically forcing traffic to flow through Security Devices
SDN Changes Security Model

- Flow Rules control when or if traffic goes through Security Device
- Network Topology is now virtual
SDN Changes the Trust Model

Security cannot be enforced by physical topology

Requires complete Trust in SDN Applications and Controller

We don’t understand the consequences
SDN Changes Organization Model

• Today most IT organizations have a
 • Network Group
 • Security Group

• SDN requires a great deal of cooperation between these groups

• All network staff will be responsible for Security Policy
It’s Not All Bad

- Uniform SDN Security Policy
- Security Everywhere
- Control Security Treatment Traffic Receives
- Isolate Compromised Hosts
Uniform SDN Security Policy

Security Application

- Couple Security Policy to SDN policy/rules and validate SDN flows against the security policy

- Ensure that Security Policy is implemented for all traffic

- Maintain regulatory and compliance requirements
Security Everywhere

Security Application

• All Routers and Switches have Security capabilities

• Security Application can take advantage of this and push rules to all network devices
Control Security Treatment Traffic Receives

Range of Security Control
- Full Firewall
- ACL style filtering
- No filtering
Isolate Compromised Hosts

- Once compromised host is detected
- Host can be isolated
Summary

• SDN has a lot of promise
 • Many of its capabilities are very powerful

• SDN Security issues are real for many organizations
 • Another case of build it and worry about Security later?

• We will all need to get beyond the “hype phase” to see what is real and achievable
Thank You