Implementing a Quantitative Risk-Based Approach to Cyber Security

Session ID: STR-W01

Scott Borg
U.S. Cyber Consequences Unit
scott.borg@usccu.us
The main problem to overcome: the statistical techniques used for other risks won’t work

- Trend Lines
- Normal Distributions (bell-shaped curves)
- Statistical Significance Tests
- Independent Variable Probabilities
- Sampling Theory (populations of known events)
- Bayesian Corrections
- Any techniques that require assigning values to individual “assets”
The Alternative: Investigate the *Mechanisms Involved*

If you know the **actual mechanism** . . .

that **connects two factors**, you don’t need to be looking for a correlation

that will **generate an event**, you can watch for that mechanism, rather than trying to extrapolate from past events

that produces **a consequence**, you don’t need a population of prior examples to estimate that consequence
Job One. Expanding the Cyber Risk Vision

You can’t see the mechanisms that drive cyber security if you’re not looking in the places where they operate!

THE TRADITIONAL VISION OF CYBER ATTACKS

Even traditional “threat analysis” is really penetration exploit analysis!
ADOPTING A BROADER VISION OF CYBER ATTACKS

Threats

Vulnerability

Consequences

Makes it possible to see the mechanisms driving events & reveals more opportunities for doing something about these
Job One: Getting to the Broader Vision

- Short, intensive **courses or workshops** for cyber-security personnel on the main risk components
- Overview briefings for **senior management**
- A senior management **endorsement** for the CISO to explore a broader approach to cyber security
Job One Output: A Plan of Action

- A general plan for tackling the next two phases of this program
- The relevant personnel prepped
- Task leaders chosen for next two phases
Job Two. Mapping the Business from a Risk Standpoint

OUTPUTS TO CUSTOMERS

What is the business actually doing to create value?

Businesses take Inputs and turn them into Outputs

I. Management of Outputs

II. Management of Production

III. Management of Inputs

IV. Coordination Across Functions

INPUTS FROM SUPPLIERS
Job Two. Mapping Basic Work Flows

What **processes** supply what other processes?

What is the **capacity** of the facilities being utilized?

How large are the **inventories** between processes?

Which processes does the business do **especially well**?
Job Two Outputs: Work Flow Diagrams
Including:

- Estimates of capacities, inventories, and capacity utilization
- A general idea of where the outputs of a process most exceed the value of the inputs
- Identification of the possible substitutes for each process and the capacities of those substitutes
Job Three. Investigating the Three Attack Components
(actually, three overlapping jobs:)

- **A. Threat Analysis** → What kind of cyber attacks can we expect and how soon or how often?
- **B. Consequence Analysis** → What amount of loss can we expect from those attacks?
- **C. Vulnerability Analysis** → To what extent are we likely to suffer that loss, given a specified mitigation policy?
Job Three (A). Threat Analysis

<table>
<thead>
<tr>
<th>THREAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attackers</td>
</tr>
<tr>
<td>Motives</td>
</tr>
<tr>
<td>Targets</td>
</tr>
<tr>
<td>Capabilities</td>
</tr>
</tbody>
</table>

Vulnerability

Consequences
Predicting cyber attacks the way we would predict “black swans”

• What kind of creatures are out there? (The Attackers)
• What do those creatures need? (The Motives)
• What opportunities could those creatures exploit? (The Targets)
• What adaptations would allow them to exploit those opportunities? (The Capabilities)
<table>
<thead>
<tr>
<th>Expertise Level</th>
<th>Description</th>
<th>Comparative Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Seven</td>
<td>Nearly unique intellectual gifts or knowledge of highly secret systems</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Level Six</td>
<td>Deep insider experience or elite, specialized training</td>
<td>100,000</td>
</tr>
<tr>
<td>Level Five</td>
<td>Substantial industry experience after a mid-level degree</td>
<td>10,000</td>
</tr>
<tr>
<td>Level Four</td>
<td>Solid mid-level university degree in the relevant subject</td>
<td>1000</td>
</tr>
<tr>
<td>Level Three</td>
<td>Relevant undergraduate coursework</td>
<td>100</td>
</tr>
<tr>
<td>Level Two</td>
<td>Sustained interest in a relevant discipline</td>
<td>10</td>
</tr>
<tr>
<td>Level One</td>
<td>A few days of web surfing by an intelligent student</td>
<td>1</td>
</tr>
<tr>
<td>Level Zero</td>
<td>No special skill or knowledge whatsoever</td>
<td>0</td>
</tr>
</tbody>
</table>

Job Three (A). Threat Analysis

Tracking at least Four Types of Attacker Expertise: Business, Vulnerabilities, Operations, Programming
Example of an American Electrical Company Assessing Likelihood of a Sophisticated Cyber-Attack on Its Large Generators

<table>
<thead>
<tr>
<th>Possible attacker?</th>
<th>Vindictive Insiders</th>
<th>Criminal Enterprises</th>
<th>Rogue Corporations</th>
<th>Ethno-nationalists</th>
<th>Ideological Militants</th>
<th>Nation States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current motivation?</th>
<th>Vindictive Insiders</th>
<th>Criminal Enterprises</th>
<th>Rogue Corporations</th>
<th>Ethno-nationalists</th>
<th>Ideological Militants</th>
<th>Nation States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Some</td>
<td>NO</td>
<td>Some</td>
<td>Yes</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reason to target this corporation?</th>
<th>Vindictive Insiders</th>
<th>Criminal Enterprises</th>
<th>Rogue Corporations</th>
<th>Ethno-nationalists</th>
<th>Ideological Militants</th>
<th>Nation States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>Some</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reason for this type of attack?</th>
<th>Vindictive Insiders</th>
<th>Criminal Enterprises</th>
<th>Rogue Corporations</th>
<th>Ethno-nationalists</th>
<th>Ideological Militants</th>
<th>Nation States</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Some</td>
<td>NO</td>
<td>NO</td>
<td>Some</td>
<td>Yes</td>
<td>Some</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant capabilities?</th>
<th>Vindictive Insiders</th>
<th>Criminal Enterprises</th>
<th>Rogue Corporations</th>
<th>Ethno-nationalists</th>
<th>Ideological Militants</th>
<th>Nation States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Some</td>
<td>Yes</td>
<td>Some</td>
<td>Some</td>
<td>NO</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signs of preparation?</th>
<th>Vindictive Insiders</th>
<th>Criminal Enterprises</th>
<th>Rogue Corporations</th>
<th>Ethno-nationalists</th>
<th>Ideological Militants</th>
<th>Nation States</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>Some</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The Pivotal Timing Question:

How soon (or how often) will the mechanisms shaping the attackers activities allow the key thresholds to be crossed?
Job Three (B). Consequence Analysis

<table>
<thead>
<tr>
<th>THREAT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attackers</td>
<td></td>
</tr>
<tr>
<td>Motives</td>
<td></td>
</tr>
<tr>
<td>Targets</td>
<td></td>
</tr>
<tr>
<td>Capabilities</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSEQUENCE</th>
</tr>
</thead>
</table>

- Value Differential

- CREATION/DESTRUCTION
 - Effects
 - Substitutes
 - Duration
 - Dependencies

Vulnerability
Job Three (B). Consequence Analysis

The value created by a business equals:
the Willingness-to-Pay of the customers
minus
the Opportunity Costs of the suppliers

The value lost equals:
the value created without attack
minus
the value created with the attack

Change in Value
Creation

Opportunity Cost
Job Three (B). Consequence Analysis

Value creation can be measured anywhere. Inputs and Outputs can be measured.
Job Three (C). Vulnerability Analysis

<table>
<thead>
<tr>
<th>THREAT</th>
<th>VULNERABILITY</th>
<th>CONSEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attackers</td>
<td>Findable</td>
<td>Value Differential</td>
</tr>
<tr>
<td>Motives</td>
<td>Penetrable</td>
<td></td>
</tr>
<tr>
<td>Targets</td>
<td>Corruptible</td>
<td></td>
</tr>
<tr>
<td>Capabilities</td>
<td>Concealable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irreversible</td>
<td></td>
</tr>
</tbody>
</table>

THREAT:
- Attackers
- Motives
- Targets
- Capabilities

VULNERABILITY:
- Findable
- Penetrable
- Corruptible
- Concealable
- Irreversible

CONSEQUENCE:
- Creation/Destruction
 - Effects
 - Substitutes
 - Duration
 - Dependencies
Job Three (C). Vulnerability Analysis

THE COMPREHENSIVE VULNERABILITY GRID
(BORG SYSTEM OF FIVE ATTACKER HURDLES AND SIX TYPES OF COMPONENTS)

<table>
<thead>
<tr>
<th></th>
<th>Findable</th>
<th>Penetrable</th>
<th>Co-optable</th>
<th>Concealable</th>
<th>Irreversible</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Hardware Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Software Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Network Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Automation Components</td>
<td></td>
<td></td>
<td>All the Potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attack Techniques &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All the Technical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Counter-Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Human Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Supplier Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Job Three (C). Vulnerability Analysis

Key Factors

• The lowest-difficulty attacker path that the attackers can be expected to find

• The expertise level and duration of effort required for this attacker path

• The expected expertise level and duration of effort for a given attack attempt (from the Threat Analysis)

• The extent to which the consequence will occur, given the likely level of attacker success
Job Three Outputs: Cyber Attack Assessment Tables

Threat x Consequence x Vulnerability = Risk

Frequency of a given attack type \times Potential Loss \times Extent to which the loss would occur = Annualized Expected Loss

<table>
<thead>
<tr>
<th>Nature of Threatened Cyber Attack</th>
<th>Likelihood of Serious Attempts (%)</th>
<th>Potential Magnitude of Loss ($)</th>
<th>Degree of Vulnerability with Current Policy (%)</th>
<th>Expected Loss with Current Policy ($)</th>
</tr>
</thead>
</table>
Job Four. Evaluating Cyber Policy Options

A) Revisiting the analyses of Threats, Consequences, and Vulnerabilities to identify possible policies for *reducing each* of these, then

B) Recalculating: Threat \times Consequence \times Vulnerability = Risk, but with different policies and counter-measures in place

<table>
<thead>
<tr>
<th>Nature of Threatened Cyber Attack</th>
<th>Likelihood of Serious Attempts with a Given Policy (%)</th>
<th>Potential Magnitude of Loss with a Given Policy ($)</th>
<th>Degree of Vulnerability with a Given Policy (%)</th>
<th>Expected Loss with a Given Policy ($)</th>
</tr>
</thead>
</table>
Job Four Outputs: Cost-Effectiveness Priority List

An ordered list of policies and counter-measures to be put into practice, determining for each:

- **What** should be done: the **actions** to be carried out and who should do it
- **How** it should be done: the **capabilities** that would make these measures feasible
- **Why** it should be done: the **expected benefit** and a way to track and measure it
Job Five. Launching Practical Risk Reduction Programs

Written Assign-Empower-Assess Orders That Provide:

The “What” from Phase IV → ASSIGNMENTS, specifying:
 1) Tasks, 2) Position(s), 3) Motivation

The “How” from Phase IV → EMPOWERMENTS, securing the needed:
 4) Expertise, 5) Information, 6) Resources, 7) Authority

The “Why” from Phase IV → ASSESSMENTS, providing the means for:
 8) Scrutiny, 9) Evaluation, 10) Replacement
Reviewing: The Five Phases in Implementing Quantitative Risk-Based Approach

- Phase I. Expanding the Vision
 → A Plan of Action

- Phase II. Mapping the Business
 → Work Flow Diagrams

- Phase III. Investigating the Three Risk Components
 → Cyber Attack Assessment Tables

- Phase IV. Evaluating Policy Options
 → Cost-Effectiveness Priority List

- Phase V. Launching Practical Programs
 → Assign-Empower-Assess Orders
Distinctive Features of This Overall Approach

- Completely transparent and publicly available
- Clear, demonstrably valid foundations
- Any scale of organization or system
- Any level of depth and detail (thoroughly iterative)
- Fully modular (alternative possibilities for every component)
- Realistic about available information
- Dynamic, process-oriented
- Produces many more options for policies and counter-measures
- Yields classic, quantitative, risk-analysis results
For information on day-long courses on the various components or permission to use this material, please contact:

Scott Borg
Director (CEO), U.S. Cyber Consequences Unit

scott.borg@usccu.us