SENDING A HUMAN TO DO A MACHINE’S JOB: ADDRESSING THREATS WITH ANALYTICS

Nick Bilogorskiy
Cybersecurity Strategist
Juniper Networks
@belegor
Agenda

- Where are we now?
- Where did we go wrong?
- Behavioral analytics architecture
- Simplify incident response
- Automate incident response
- Q&A
The Security Gap is Growing

- The threat landscape is becoming increasingly complex and continues to grow
- The “always on,” 24/7 nature of cybercrime is straining security personnel
Number of Alerts Generated Each Week

12,172 Alerts

Source: Ponemon Institute and Juniper Networks, October 2017
Number of Alerts Investigated Each Week

518 Investigated

Source: Ponemon Institute and Juniper Networks, October 2017
Time Wasted Chasing False Positives Each Week

352.3 Hours

Source: Ponemon Institute and Juniper Networks, October 2017
Annual Cost of Chasing False Positives

$1,145,000

Source: Ponemon Institute and Juniper Networks, October 2017
Average Annual Company Cost of Breaches

$7,000,000

Source: Ponemon Institute, 2016
Where Did We Go Wrong?

Traditional approach:

Prevent
Where Did We Go Wrong?

Traditional approach: Prevent

- Threats bypass the Prevent layer
- Breach goes undetected – for a while
- IR teams work hard to resolve
- Business experiences are disrupted
- Lost data, lost money, lost reputation
Why Can’t the Prevent Layer Stop Everything?

Performance limits the effectiveness of prevention

Fast – What can be done in milliseconds?
- Pattern / rule matching – Static analysis; have we seen this before?
- Reputation matching – IP address, domain name, URL on blacklist?

Slow – What happens if the process takes too long?
- Sites load slower (SWG)
- Applications open slower (Endpoint AV)
- All network traffic goes slower (Firewalls)
Why Can’t the Prevent Layer Stop Everything?

Advanced malware

- Constantly changes its “look”; Prevent layer can’t match pattern
- Kills processes in endpoint security software; can’t send alerts
- Complex; multi-channel C&C callback process; no unusual traffic
Security leaders must move from trying to prevent every threat and acknowledge that perfect protection is not achievable. Enterprise must assume that it is already compromised.

Gartner, 2016

Security leaders must look to simplify operations and automate remediation steps for when breaches do occur.
Where Did We Go Wrong?

Relying on a human to do a machine’s job

- By 2019, there will be 6 million job openings for security professionals – but only 4.5 million available to fill those roles.
- 92 percent of ISACA’s survey respondents say it will be difficult to find skilled cybersecurity candidates.
- Cybersecurity specialists will see an average pay rise of 7% in 2018.
How Behavioral Analytics Can Help

Analytics promise to provide better visibility, improved detection and enhanced workflows. Analytics solutions are increasing detection accuracy and providing security pros with better data with which to make decisions.
How Behavioral Analytics Can Help

- Analytics collects, correlates and understands data from multiple sources to identify advanced threats.
- It continuously learns threat behaviors and automatically works with security tools to contain threats.
New Security Paradigm

- Addressing the new threats through context, correlation, **machine learning** and actionable intelligence.

- Security devices and applications must be sharing actionable threat intelligence across IT infrastructure, locations and organization boundaries.

- Intelligence must be actionable – prioritized correctly, filtered from false positives and ready to use
Behavioral Analytics vs. Threat Intelligence

- Behavioral analytics generates new threat intelligence
- Threat intelligence is applied to power incident response and detection
Behavioral Analytics Use Cases

<table>
<thead>
<tr>
<th>Team</th>
<th>Use case</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat Intel hunters</td>
<td>Moving from big data to the endpoint to find infections</td>
<td>“Who got infected?”</td>
</tr>
<tr>
<td>Digital Forensics Incident Response (DFIR) hunters</td>
<td>Moving from infected endpoint backwards to big data to find root cause</td>
<td>“How they got hit?”</td>
</tr>
</tbody>
</table>
Behavioral analytics should detect and correlate events from all primary attack vectors: Web, Email and Lateral spread.
Behavioral analytics should detect and correlate events in all parts of the killchain.
Behavioral analytics solutions should rely on Open APIs to enable information exchange with other vendors.
Typical Incident Response Process

New alert

Is this a Threat?

YES

Should I care about it?

YES

Action:
Mitigate and Remediate

NO

Action:
Whitelist and Report False Positive

NO

NAC
You Should Care if Incident Risk is **High**

Goal: Better prioritization of effort

Intersect incident targets with asset values

- E.g. Guest network activity vs. data center network anomaly

Factor in scope and progression context

- How close to “Action on Objectives”

Has attack been disabled by other controls?
Behavioral Analytics Simplifies Response Process

- Source, target, payload, etc.
- Threat vector – web, email, document, lateral spread
- Behavior – Trojan, reconnaissance, C&C, exfiltration
- Prioritized consolidated threat profiles for IR team
- Extract end-user information from active directory
- Allows incidents to be identified by username rather than IP address or DNS machine name
Collect malicious objects: files, PCAPS, network telemetry

- Needed to verify incident
- Needed to determine effective and appropriate mitigation

Attack Scope

- Which devices/users are affected?
- How long has attack been active?
 - Requires time series data normalized by resource extending back weeks, months, (years?)
Behavioral Analytics – Simplifies Incident Response

- Collect data from web, email, etc.
- Analyze/detect advanced threat
- Identify infected host/user
- Ingest meta data from all sources
- Correlate all related host events
- Consolidate events on timeline
- Present as one security incident

- Reduces noise from SIEM alerts
- Eliminates manual correlation
- Provides insight into threat
- Simplifies incident response
Behavioral Analytics – Simplifies Incident Response

- Web Sources
- Email Sources
- Lateral Sources
- End point
- Other Sources

Scalable Data Store

Behavioral Analytics

Data Correlation

Behavioral Analysis

Machine Learning

SIEM

Less
- Raw data feeds
- Manual labor
- False positives
- Wasted time

More
- Correlated events
- Accurate incidents
- SOC/IR efficiency
Behavioral Analytics for Interactive Investigations

Ingest Store Analyze Visualize

Write Optimized, Infinite Scale With Commodity HW

Native Detection Engines (exploits, files, network)
Analytics Engines (context, correlation)
Prioritization, Risk Analysis

Input
Raw data and Log data ingested and analyzed from multiple network, detection, and identity sources

Output
Example: Consolidated, correlated timeline view of all incidents for a compromised host or named user

Host/User Timeline
Threat Migration
Incident View
Threat Hunting
Behavioral Analytics Architecture

- Extensible Event Ingestion
- Context Ingestion
- Data/Event Enrichment
 - Combine Events With Context
- Storage Cluster
- Detection Engine
- Elastic Processing
 - Scales To Match Load

- Decouple Ingestion, Storage, Processing
- Collect raw data for detection, not just logs
- Add Endpoint Identity to all data
- Extend to arbitrary time horizon
- Elastic Detection processing
Automation with Machine Learning

Behavior Data

Static Data

Reputation Data

Machine Learning

Detection, Classification, Risk Assessment
Automation of Common IR Tasks

<table>
<thead>
<tr>
<th>Malware Investigation Tasks</th>
<th>Manual Effort Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify Host and User</td>
<td>10 min</td>
</tr>
<tr>
<td>Collect AV and EDTR data for given host</td>
<td>25 min</td>
</tr>
<tr>
<td>Collect network data (NGFW, SWG)</td>
<td>25 min</td>
</tr>
<tr>
<td>Analyze & Correlate</td>
<td>35 min</td>
</tr>
<tr>
<td>Determine progression and scope</td>
<td>15 min</td>
</tr>
<tr>
<td>Contain the threat</td>
<td>10 min</td>
</tr>
<tr>
<td>TOTAL TIME</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Source: https://www.cyphort.com/resources/#calc
Automation in Action

<table>
<thead>
<tr>
<th>Investigation Task</th>
<th>Using Automation</th>
<th>Manual Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chasing False Positives</td>
<td>38 hours</td>
<td>390 hours</td>
</tr>
<tr>
<td>Post-breach Mitigation</td>
<td>37 hours</td>
<td>195 hours</td>
</tr>
<tr>
<td>Investigating Breach Indicators</td>
<td>55 hours</td>
<td>177 hours</td>
</tr>
<tr>
<td>Total time taken</td>
<td>130 hours</td>
<td>722 hours</td>
</tr>
</tbody>
</table>

Automation gives ~80% Time Savings over Manual Processes

Reducing Cybersecurity Costs & Risks Through Automation Technologies, November 2017
Behavioral analytics simplifies and automates incident response for security teams through:

- Correlation of signals across various vendors
- Prioritizing incidents on threat risk
- Adding identity context and timeline visualization
- Integrating with existing controls for threat mitigation
QUESTIONS?

Email: mikolab@juniper.net

Twitter: @belogor