BLOCKCHAIN APPLICATIONS AND THEIR WEAKNESSES: A PRACTICAL INVESTIGATION

LAB LEADER: James Stanger, PhD
Chief Technology Evangelist, CompTIA
Twitter: @jamesstanger

LAB FACILITATORS:
Chris Hodson
Stephen Schneiter
Product Manager
CompTIA
@saschneiter
About James

James Stanger, PhD
Chief Technology Evangelist - CompTIA
Security+, Network+, MCSE, LPI Linux, Symantec STA

I work with SMEs and tech leaders around the world
• Linux and open source
• Emerging technology
• Security analytics
• Risk management
• Penetration testing, risk assessment, IDS, SIEM
• Network administration
• Virtualization
• Web technologies
• Certification development
• Award-winning author and instructor
About Chris

Chris Hodson

CISO, EMEA
Office of the CISO, EMEA Region, Zscaler

Trusted advisor to executives, board members, and stakeholders

- Expertise in secure network design, architecture and management
- Mapping technical solutions to business concerns
- Cloud security
- Risk management strategies
- Threat management
- Privacy and security issues, including GDPR
- Applied security, including blockchain and cybersecurity
Stephen Schneiter
Product Manager, CompTIA

I am the product manager for CompTIA Security+ and the program manager for the CompTIA Instructor Network (CIN)

Areas of expertise along the lines of
- Networking
- Cybersecurity
- Technical training
Why we’re here

Our job together is to:

Educate + Learn = Apply

Our job as lab leaders:
To facilitate discussion and hands-on learning

Your job:
To participate and provide input and learn about blockchain

The “take away”
Anticipate practical issues with blockchain implementation

Let’s get going!
DELIVERABLES
Deliverables

- White paper / report
 - From the “RSA 2018 San Francisco blockchain focus group”
 - Will report on our discussions today
 - Published on www.comptia.org
 - Discuss our findings

- Discussion of known weaknesses
 - Platform and supporting technology considerations
 - Threat modeling matrix
 - Discussion of exposure time and blockchain
SECTION 1: UNDERSTANDING SPECIFIC SECURITY ISSUES IN THE BLOCKCHAIN PROTOCOL ITSELF

A discussion
Institutional uses and challenges

- **Uses – the “plus side”**
 - Practical uses
 - Benefits of disruption

- **Challenges**
 - Malevolence
 - Where blockchain can be misused
 - Where blockchain implementations can “break”
 - Unintended consequences of disruption
What business problems does blockchain solve?

Question helps identify real uses – and *real-time blockchain hacks*

Problems solved and solutions given can include:

1. **Trust / Nonrepudiation**
 - Remember: Satoshi created blockchain to solve a cryptocurrency need: Trust
 - Read Satoshi’s [white paper](#)
 - Authoritative proof of transactions (traceability)

2. **Disintermediation – eliminate the middle players**

3. **Replace / disrupt traditional services**
 - Contract management / lawyers
 - Notary, title companies
 - Chain of custody (Supply chain management)
Under what conditions is (public) blockchain useful?

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple parties involved</td>
<td>Can be used for cash-like transactions</td>
</tr>
<tr>
<td>Low – or no – trust environment</td>
<td>Blockchain acts as a trust mechanism</td>
</tr>
<tr>
<td>Need for auditability and speed</td>
<td>Do you want tracking?</td>
</tr>
<tr>
<td>Replacement for slow-moving solutions</td>
<td>Is blockchain going to work better, or are you just getting on the "bandwagon?"</td>
</tr>
<tr>
<td>Need for “disintermediation”</td>
<td>Get rid of the middle man!</td>
</tr>
</tbody>
</table>
Practical uses for blockchain

Research conducted by CompTIA

Uses by sector – way beyond cryptocurrency

1. Manufacturing
2. IT administration
 - Cloud – proof of work
 - Password augmentation / replacement
3. IT security
 - Authentication / multifactor / Packet tracing (?)
 - Chain of custody
4. Finance / real estate
 - Smart contracts
 - Crypto-currency
 • Transportation
 • Entertainment
Blockchain types

Let’s break it into two categories

- **Public**
 - Decentralized
 - Federated
 - Peer-to-peer

- **Private**
 - Less decentralized – many to many
 - bb2b

Consensus authentication

Transactions viewed by public

Supports anonymous transactions

High immutability factor

Totally decentralized trust

Transactions don’t have to be anonymous

Allows fungibility – immutable to a point

Scalability and performance

Like the public and private cloud debates of old right?
Institutional challenges

- By sector / vertical
 - Finance
 - Manufacturing
 - Retail (Walmart – food chain)
 - Healthcare
- Do you really want a public, immutable record?
- Regulatory concerns
GROUP DISCUSSION
Questions

1. What practical uses of blockchain have you seen?
 - Please provide specific examples, not just theoretical uses
 - Go beyond simply listing terms such as smart contracts, supply chain management, cryptocurrencies, service tracking, user tracking
 - Discuss specific examples, and be prepared to report back on one good one per group

2. Where is your business/organization on its blockchain journey?
 - Innovation?
 - Incubation?
 - Nothing at all?

3. Which industry verticals do you think blockchain will have the greatest impact?
SECTION 2: PRACTICAL IMPLEMENTATION ISSUES – THE “INTERSTICES”

A discussion
Network architecture issues - considerations

- What elements of the architecture will be put “under pressure” due to blockchain implementations?
 - End points
 - Processing encryption
 - Network elements
 - Routers

- Personal security – major issue
 - End user security remains the single-largest issue facing us today
 - Wozniak
 - Someone panics and deletes things
 - How will blockchain simply amplify this issue?
Where will the hackers look?

- **Interstices**
 - The “hard to reach” places
 - Dependencies

- Programming the protocol/solution

- Consensus building technologies
 - [Parity issues](#)
 - Smart contract security issues

- Key safety
 - No recourse for lost keys?
 - How well do we back up keys right now?

“The team then manually analyzed 3,759 contracts and found they could exploit vulnerabilities in 3,686 of them.”
Architecture elements that can be attacked

- Databases and Monero
- Well-publicized Oracle issue
- PeopleSoft
- Weblogic servers

Tidbit: Hackers used the vulnerability to mine cryptocurrency, and ignored the PII on the PeopleSoft implementation
End points and blockchain security

- Wallets
- Bad code
- Lack of monitoring
- Infrequent updates?
- Dependencies
- Payment platforms
- Parity software and platforms
Cookies leave . . . crumbs

Crumbs lead to information leakage

ConJoin anonymity technique

Wallet issues

Helps

Social engineers

Reconnaissance

JavaScript and other languages
ETHEREUM DEMONSTRATION
SECTION 3: GETTING DEEPER INTO THE ISSUES

A discussion
Attacks (cont’d)

- Social engineering: The human element
 - Who learns that you’re a bitcoiner in the first place?
 - Networks of attackers
 - Only as safe as the platform where information is stored
 - Network connected?
 - Physical security?
 - The old principles still apply

- Only as safe as the person using blockchain

- Transactions can’t be undone

Information leakage
Browser
ISP / mobile provider
Associated services
SMS/SS7 hacks
GROUP DISCUSSION: SOCIAL ENGINEERING
The fundamental things apply...
* Social engineering
* Platform security
* Multifactor authentication
Most pressing issues for blockchain: What order?

- What are the most likely problems that blockchain will experience?
 - Social engineering
 - Software development lifecycle issues (e.g., buffer overflows, race conditions)
 - Problems with the protocol
 - Problems with underlying platforms and associated protocols
 - Data corruption / manipulation
 - Other (list the problem, in order)

- Your job is the take the above and put it into what you feel is the most likely order – and we want to see you justify that order
Security issues: Wallets and keys

- **Components**
 - **Ethereum wallet**
 - Problem: Coding bug in wallet parity code software
 - Solution
 - Bug fix? Create a “strong fork”
 - How well thought through is this?
 - Private key
 - What if you lose it?
 - Recourse mechanism?
 - We’re not very good at backing up private keys as an industry
Business issues

- Do we really want transparency?
- Do we really want an indelible record?
 - Never changed?
 - What if you want to change the contract?
 - How are such things announced?
SECTION 4: SAMPLE IMPLEMENTATIONS AND HACKS

A discussion
Attacks (cont’d)

- Progress of attacks
- Finney (2011)
- Vector 76 (one confirmation) 2011
- Time jacking (2011)
- Double spend / race (2012)
- Brute force (2013)
- > 50% (2013+)
- Wallet theft (2014)
- DDoS (2014)
- Transaction malleability (2015)
- Refund (2017)
- Hijacking (2017, 2018)
- Fork (2013, 2016, 2018)
Attacks (cont’d)

- Additional attack (digital signatures)
- Vector76 attack (attacks exchange—*involves pre-mining*)
- Brute force
- > 50% / 51% attack, “Goldfinger” (*hypothetical*)
- Bitcoin hijacking
- Refund attacks
- DDoS
- Block discarding
Ethereum – Parity hack

- $32 million loss
 - Vulnerability in the wallet software
 - Not in the protocol, *per se*

- What lessons can we learn?
Coincheck hack

- $530 million stolen?
- Private key stolen
- Basic security measures not followed
 - Internet-connected “hot wallet”
 - Should have used cold storage instead
 - No multifactor authentication
 - Weak private key storage techniques
 - Social engineering involved
 - No IDS on key resources
 - No analytics – no “red team, blue team”
Weaknesses

- Timing is everything
- Remember the old NTP issues of old?
- A similar (analogous) issue
- Two different modes for verifying application
 - Full
 - Simplified
- Scalability
 - Cost
 - Energy
Weaknesses (cont’d)

- Hijacking (Sybil attack)
 - The entire connection
 - Fake network
 - Untrusted Internet connection / mobile wallet

- Race conditions (timing, sort of)
 - Broadcast two invalid transactions at the same time
 - Attacker needs to make a network connection directly ot the victim – relatively theoretical

- Double spend (timing)
Finney attack

- Attacker is mining blocks – *must be a miner*
- The block he tries to use includes a transaction
- This transaction sends some of his/her own coins back to himself without broadcasting the transaction
- When attacker finds a block, he does not broadcast it
- Sends the same coins to a different merchant to purchase something
- After the merchant accepts payment and irreversibly provides the service, the attacker then broadcasts his/her block
- The transaction that sends the coins back to the attacker, which is included in this block, overrides the unconfirmed payment to the merchant

Involves *pre-mining*
Attacking System

The attacker’s hashing power is greater than > the rest of the miner’s hashing power.

The “work” that created the attacker’s private blockchain is > than that of the public blockchain, so the network adopts the private blockchain.

What larger lessons can we learn from this issue?
Another form of double spend attack

(a) Initial state of the blockchain in which all transactions are considered as valid.

(b) Honest nodes continue extending the valid chain by putting yellow blocks, while the attacker secretly starts mining a fraudulent branch.

(c) The attacker succeeds in making the fraudulent branch longer than the honest one.

(d) The attacker’s branch is published and is now considered the valid one.

What larger lessons can we learn from this issue?
Weaknesses and today’s companies

- To Dell’s customers, the risk is chump change
- Cost / benefit ratio
- Hack / benefit ratio
SECTION 5: ANTICIPATING AND RECTIFYING BLOCKCHAIN SECURITY ISSUES – AND USING BLOCKCHAIN TO RECTIFY SECURITY ISSUES

A discussion
Elements to attack: WiFi and browsers

- User sessions (blockchain faucets)
- Why? To mine cryptocurrency more cheaply
- Distributed networking
- WiFi
 - CoffeeMiner
 - Additional attacks
- Browsers
 - Browser hijack
 - Cryptojacking
Elements to attack

- The cryptocurrency “oracle”
- A “translator” for information provided outside of a blockchain
- Elements
 - Software
 - Hardware
 - Inbound
 - Outbound
 - Consensus

“Oracles provide the necessary data to trigger smart contracts to execute when the original terms of the contract are met. These conditions could be anything associated with the smart contract - temperature, payment completion, price changes, etc. These oracles are the only way for smart contracts to interact with data outside of the Blockchain environment.”

How are these implemented? How can they be manipulated or compromised?
Elements to attack: Blockchain oracle

Source:
https://cointelegraph.com/explained/blockchain-oracles-explained
Wallets – how would you attack them?

- **Hot**
 - Internet-connected
 - Like carrying cash

- **Cold**
 - Holding funds
 - Transfer ability available

- **Physical stores**
 - Physical
 - Side channel attack

Hand-implanted NFC chips open this man's bitcoin wallet
Blockchain and passwords?

- **Password replacement / augmentation**
 - Who will introduce it?
 - Remember fingerprint scanners?
 - Banks tried
 - Apple had to popularize

- **Considerations**
 - Popularization – who will explain it?
 - Privacy issues and perceptions
 - Form factor – how to implement?
GROUP DISCUSSION
4. What specific security vulnerabilities are you seeing?
 - Different to anything we’ve seen before?
 - Just hype?
 - Are you seeing innate dangers?
Question 5: Secure development lifecycle and blockchain

- The same principles apply
- It’s clear blockchain is being developed in the standard languages.
- We already struggle as an industry in this area.
- What existing issues will we port over to blockchain?
- What new issues will arise?
 - Smart contracts, identity management
SECTION 6: APPLYING WHAT WE’VE LEARNED
GROUP ACTIVITY – THREAT MODELING
Blockchain threat modeling matrix

<table>
<thead>
<tr>
<th>Blockchain platform / element / supporting technology (e.g server, protocol, wallet, browser)</th>
<th>Possible attack</th>
<th>Result / Indicator of compromise (i.e., artefact left behind)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Blockchain protocol</td>
<td>Example: > 50 attack</td>
<td>Example: Data manipulation / suspect or delayed confirmations on data blocks</td>
</tr>
</tbody>
</table>
Incident response and blockchain: Exposure time

Compromise → Detection → Containment

- **Dwell Time**
- **Containment Time**
- **Exposure Time**

Copyright: 2018 Target.com
Question 6: Cybersecurity use cases

How can blockchain be used to provide cybersecurity services?

* Authentication, authorization

* PKI replacement / supplementation

* What other technologies already exist, and can they do a better job?

* DDoS mitigation?
DDoS and blockchain: An applied example?

- Traditional DDoS "straightjacket" services already exist
- Can we use blockchain to supplement?
 - Pro
 - Eliminates – or reduces – anonymity and packet forging
 - Tracking
 - Con
 - Cost of blockchain per packet on routers
 - Computing cost to create blockchain associations
Question 7: Skills shortage and blockchain

We already have a considerable skills gap.

• How will blockchain mitigate the skills gap?
• How will it make the problem worse?
• Issues to consider:
 • Developers
 • People who run infrastructure
 • Impact on existing jobs
 • New job roles
TO SUM THINGS UP . . .
Summary

Focus on the practical implementations!

• Fundamental cybersecurity principles

• In many ways, yet another platform to secure!

• Consider
 • Data manipulation
 • Platform interdependencies and “interstices”
 • Software development lifecycle
 • Eventual protocol issues that will arise
 • Threat modeling

Look for the focus group report, white paper, and other resources on Comptia.org!
For more information

For the latest slides, and additional blockchain research, please to the following URL:

http://www.land.certification.comptia.org/RSA
Thank you!

Chris Hodson
chodson@zscaler.com
+1 44 (0)7538 923922
Twitter: @ChrisHInfoSec
https://www.linkedin.com/in/christopherjhodson

Articles:
https://www.csoonline.com/author/Chris-Hodson

James Stanger, PhD
jstanger@comptia.org
+1 (360) 970-5357
Twitter: @jamesstanger
Skype: stangernet
CompTIA hub:
https://certification.comptia.org/it-career-news/hub/James-Stanger

Stephen Schneiter
sschneiter@comptia.org
+1 (630) 6788503
Twitter: @TeachCompTIA
Skype: stephen.schneiter

Latest articles and blog entries:

- Cloud Orchestration with Chef – Admin Magazine
- Threat Hunting with Yara – Admin Magazine
- How to engage with the C-Suite on cyber risk management
- CISOs: What you can control – and what you can’t – in GDPR
- A New Year Cybersecurity two-fer: Meltdown and Specter
- The Whole Story about Equifax?
- From Ransomware to Wiperware
- Don’t Hack Me, Bro!
- 5 reasons your company can't hire a cybersecurity professional, and what you can do to fix it
- The old has become new again