Continuous Authentication and Distributed Session Management

Mance Harmon
CEO and Co-founder
Swirlds Inc.
@ManceHarmon
@Swirlds
We need a session ‘kill switch’

...that works for all protocols and client types

WHEN...
• Employment Termination
• Lost or Stolen Devices
• Elevated Risk

...AND for Continuous Authentication
Session Types

Relying Parties:
(Applications / APIs)

Identity Provider:

Authentication Session

Application Session #1

Application Session #2

Application Session #3
Front Channel Solutions

Browser-based communication
• iFrame
• Form Post / Redirection
• Logout Images
Problems
• No guarantees
• Unknown state

Browser Cache
- App1 Session Cookie
- App2 Session Cookie
- App3 Session Cookie
- IdP Session Cookie

Web Browser

Application 1
Application 2
Application 3
Back Channel Solutions

Direct API: IdP → RP

Problem: Correlating users with application sessions
The Ideal Solution

<table>
<thead>
<tr>
<th>Sharing State</th>
<th>Verification</th>
<th>Front Channel</th>
<th>Back Channel</th>
<th>Ideal Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes
- Sharing state and verification are both necessary for an ideal solution.
- If either is not satisfied, the solution is not ideal.
IDP Polling (One proposal for OIDC)

- **JS Session Management Client**
 - IdP loads JS for each application
 - JS polls IdP to check status of authN session
 - Access Token only available if approved by IdP

- **Problems**
 - Only works with single-page applications
 - IdP must be able to scale polling service
 - IdP must ensure polling service is active
 - When not active, allow / deny access?
Distributed Session Management

- Advantages
 - Independent of identity protocol
 - Independent of client type
 - Status lookups are local
 - No additional load on IdP
- Disadvantages
 - Additional bandwidth needed to replicate session transactions
 - RPs must add check of local session database to workflow
Advanced Features

- Session Extension
- Session Suspension
- Fine-grained, Dynamic Attributes
 - Level of Assurance
- Continuous Authentication
 - Clients and Applications can pass signals to risk engine
 - “Kill Switch” needed for infinite sessions
Continuous Authentication = Logout By Exception

Single Logout
“Kill Switch”

Enables
Continuous Authentication
Sessions with no expiry

Requires
Use Case Requirements

- Fine-grained, trusted consensus timestamps
 - Cryptographic Proof of Receipt
 - Cryptographic Proof of Transmission
- Resilience to DoS attacks
- Immutable record for audit
- High throughput (transactions per second)
- High availability (no single point of failure)
- Low computation cost
- Scalable to large numbers of network members
Choosing a Consensus Algorithm

Categories of distributed consensus algorithms:

- Leader-based Systems
 - PBFT, Paxos, RAFT, TenderMint
 - Non-Proof of Work Blockchain
- Proof of Work Blockchain
 - Bitcoin, Ethereum
- Hashgraph
Leader-based Consensus

- Many variations
 - Includes Non-PoW Blockchain

- Advantages
 - Low computation requirements
 - Proof of Transmission
 - Immutable Audit
 - High Throughput
 - 1000s of tps, seconds latency
 - High Availability

- Disadvantages
 - Designed for ‘fault’ tolerance, not ‘attack’ tolerance
 - Susceptible to DoS attacks
 - No proof of receipt
 - No consensus timestamps
 - Moderate Scalability
 - Max Nodes: ~100
Proof of Work Blockchain

- **Advantages**
 - Proof of Transmission
 - DoS Resistance
 - Immutable audit trail
 - High throughput possible
 - High availability
 - Scalability

- **Disadvantages**
 - High computation requirements
 - Coarse-grained timestamps
 - No proof of receipt
Hashgraph Consensus

- Satisfies all requirements
 - Consensus Timestamps
 - Proof of Receipt
 - Proof of Transmission
 - DoS Resistance (Gossip Protocol)
 - Immutable Audit
 - High Throughput (>400,000 tps)
 - High Availability
 - Low computation (No PoW)
 - Scalable (1000 nodes)
Summary: Analysis of Requirements

<table>
<thead>
<tr>
<th>Feature</th>
<th>Server</th>
<th>Leader</th>
<th>PoW Blockchain</th>
<th>Hashgraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus Timestamps</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
</tr>
<tr>
<td>Proof of Receipt</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
</tr>
<tr>
<td>Proof of Transmission</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DoS Resistant</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Immutable Audit</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Throughput</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Fault Resistant</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Computation Cost</td>
<td>✔</td>
<td>✔</td>
<td>×</td>
<td>✔</td>
</tr>
<tr>
<td>Scalable</td>
<td>✔</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Summary

- A distributed session database moves complexity to a layer below identity protocols
- A mechanism for shared state opens opportunities beyond session logout
- Ping Identity proposed DSM to OIDF last year
- Open Source implementation of DSM to be released soon; DSM protocol continues to evolve
- When choosing consensus algorithm, start with application requirements, and plan for feature creep
Resources

- Contact Info: Mance@Swirlds.com
- DSM Software Download: dwaite@pingidentity.com
- Blog: Choosing a consensus algorithm
 - www.linkedin.com/in/manceharmon
- www.PingIdentity.com
- www.Swirlds.com