UMA in Health Care: Providing Patient Control or Creating Chaos?

David Staggs JD, CISSP

Technologist / IP Attorney
Staggs PLLC
UMA Value Proposition

- User Managed Access (UMA) brings granular control to the health care ecosystem
- scalable, secure, and provides uninterruptible consent
- patient control encourages trust and participation
- extends electronic workflow:
 - reduces paper
 - simplifies audit and compliance
 - multi-use workflows possible
Making Possible Real

- unlock access to electronic health records (EHR) and personal health records (PHR)
- develop an ecosystem that opens entrepreneurial opportunities and accelerates progress
- establish publicly available APIs to the software ecosystem and share vast stores of data
- the solution must respect individuals’ privacy and guard against data breaches
The Future is RESTful

- RESTful Health Exchange (RHEX)
- links to specific EHR data – not just moving entire record
- allows app providers to address small practices
- adds capabilities that are missing in secure email
- uses OAuth 2 and OpenID Connect (OIDC) profiles
The Future is SMART

- Substitutable Medical Applications Reusable Technologies
- opens up the EMR system silo
- open-source, developer-friendly API
- gives application ecosystem access to data
 - encourages innovation
- uses OAuth 2 and OpenID Connect (OIDC) profiles
The Future is on FHIR

- Fast Healthcare Interoperability Resources
- Data formats and elements with an API for exchanging EHR
- Uses an HTTP-based RESTful protocol
- Uses OAuth 2 for authentication to APIs
- Adopted by RHEx and SMART
- Supported by Health Level Seven (HL7)
OAuth 2 Authorization (Real Time) Code Grant

1. **Resource Owner**
2. **User-Agent**
3. **Client**
4. **AuthZ Server**

- **Client ID and Redirection URI**
- **User Authentication**
- **Authorization Code**
- **Authorization Code & Redirection URI**
- **OAuth Access Token**
OAuth 2 Framework

- replaces the anti-password pattern
- resource owner OKs token for client’s access
- HTTP-based RESTful protocol
- includes scopes / TTL that manage access rights
- permits service chaining (token that can be passed)
- Privacy by Design (PbD)
Security and Privacy

- Protected Health Information (PHI) and HIPAA
- Patients should have control over their PHI
- Need an extension to OAuth 2 / OIDC profiles
 - Use OAuth to protect APIs and OIDC to get credentials
 - Enforce patient’s consent directives, even when the patient is not available (uninterrupted consent)
- User Managed Access (UMA) provides a solution
Introduction to UMA

1. AuthZ API
2. Resource
3. Owner
4. AuthZ
5. Client
6. Protection API
7. AuthZ Server
8. Requesting Party
9. PAT
10. ATT
11. RPT
12. manage
13. control
14. protect
15. access
16. authorize
17. custodian
18. doctor
19. patient
UMA OAuth Tokens

- Authorization API (AAT)
 - authorization server, requesting party, and client

- Request API (RPT)
 - requesting party, client, resource server, and authorization server (not resource owner)

- Protection API (PAT)
 - resource server, authorization server, and resource owner
 - resource owner (e.g. patient) sets access policy and scope
UMA Spiral Slide

- **resource owner**
- **resource server**
- **requesting party**
- **client**
- **doctor**
- **custodian**

- **manage**
- **consent**
- **control**
- **negotiate**
- **authorize**
- **protect**
- **access**

- **patient**
- **browser or app**
UMA’s Chaotic Potential

- if patients pick their resource servers (personal cloud) how do they keep track of where everything is?
- will health care providers allow you to use any authorization server to control access to records they create?
- will treatment by multiple providers cause conflicts on which authorizations server is used to control?
 - provider/custodian A requires using only authorization server X
 - provider/custodian B requires using only authorization server Y
UMA Health Ecosystem Deep Dive

Patient
- **Resource Owner**
- **ACS**

Custodian
- **Protection Client**
- **Protection API**
- **Reg. Resources and Scopes**

Authorization Server
- **GUI**
- **Authorization API**
- **(one time) Acquire Protection Access Token (PAT)**
- **Verify Token, Invoke Privacy Protective Service**

Doctor
- **ACS**
- **Authorization Client**
- **(one time) Acquire Authorization API Token (AAT)**

1. **Received Resource Owner**
2. **Receive RPT**
3. **PAT Received**
4. **Reg. Resources and Scopes**
5. **Set Resource Authorization Policy**
6. **Request for Data**
7. **Redirect to Authorization Server**
8. **Verify Token, Invoke Privacy Protective Service**
9. **Request Requesting Party Token (RPT)**
10. **Receive RPT**
11. **Request for Data with Authorization Token**
12. **Return Data**
Scopes

- scopes provide finer grained control
- scopes have the following:
 - name of the resource that can be displayed to owner
 - human-readable string describing some extent of access
- for example, scope involving reading or viewing resources:

```json
{
    "name" : "View",
    "icon_uri" : "http://www.example.com/icons/reading-glasses"
}
```
Scope Description Documents

- scope description documents have the following:
 - name, type, scopes, icon_uri

```json
{
    "name": "Photo Album",
    "icon_uri": "http://www.example.com/icons/flower.png",
    "scopes": [
        "http://photoz.example.com/dev/scopes/view",
        "http://photoz.example.com/dev/scopes/all"
    ],
    "type": "http://www.example.com/rsets/photoalbum"
}
```
More Potential Chaos

- token introspection by resource server at authorization server
 - need to understand semantics of the token
- OpenID OAuth profile
 - ID Token – a signed and optionally encrypted JWT containing identity and attribute claims about the user
 - UserInfo Endpoint – a protected resource where the relying party can request additional claims about the user
 - OAuth scopes are used to request individual user attributes
Can We Just Get Along

- health records in a personal cloud spread across resource servers should have uniform scope syntax
- authorization servers’ scope description documents
 - simplify resource set registration mechanism
 - prevent scope names from revealing PHI
 - is a pointer to standard scope descriptions politically possible?
- consider HEART (Health Relationship Trust)
OpenID HEART

- health-related profiles layering: OAuth 2.0, OpenID Connect, FHIR, OAuth 2.0 scopes, and UMA
- HEART WG is defining use cases and requirements
- expect an implementation guide soon
- demonstration of current capabilities
 - Eve Maler, ForgeRock, HEART WG Co-Chair
Apply Slide

- identify your use cases requiring uninterrupted consent
- use HEART open source code for a test bed
- mitigate token vulnerabilities
 - audience parameter, state parameter, signed JWTs, redirection URIs
- identify what resources need protection and define terminology
- identify your role in the ecosystem
 - patient UX, authorization server, EHR custodian, OpenID claims provider, organization offering standard scope descriptions