Tools of the Hardware Hacking Trade

Joe Grand

Principal Engineer
Grand Idea Studio
@joegrand
Finding the Right Tools for the Job

- Tools can help for design or "undesign"
- Access to tools is no longer a hurdle
- Can outsource to those with capabilities/equipment you don't have
- The key is knowing what tools are available and which one(s) are needed for a particular goal/attack
Hardware Hacking

- Information Gathering
 - Obtaining information about the target

- Teardown
 - Product disassembly, component/subsystem ID

- Interfaces
 - Protocol monitoring/analysis/emulation

- Firmware
 - Extract/modify/reprogram code or data

- Chip-Level
 - Silicon die modification/data extraction
Tools of the Hardware Hacking Trade

- Signal Monitoring/Analysis
- Manipulation/Injection
- Imaging
Signal Monitoring / Analysis
Oscilloscope

- Provides a visual display of electrical signals and how they change over time
- Introductory guides: www.tek.com/learning/oscilloscope-tutorial
- Range of hobbyist (low end) and professional (high end) tools
 - Analog/digital/mixed signal, # of channels (~1-4), bandwidth, sampling rate, resolution, buffer memory, trigger capabilities, math functions, protocol decoding, probe types, accessories
- Standalone: HP/Agilent, Tektronix, Rohde & Schwarz, LeCroy, Rigol
- PC-based: PropScope, USBee, PicoScope, BitScope
Oscilloscope: Example

- SFMTA Smart Parking Meter (2009)
- Joe Grand, Chris Tarnovsky, Jake Appelbaum
- Monitored meter/card communication w/ oscilloscope
 - Slight variation in signal voltage determined direction of data
- Created custom Microchip PIC-based smartcard emulator
- www.grandideastudio.com/portfolio/smart-parking-meters
Logic Analyzer

- Used for concurrently capturing, visualizing, and decoding large quantities of digital data
- Introductory guides: www.tek.com/learning/logic-analyzer-tutorial
- Range of hobbyist (low end) and professional (high end) tools
 - # of channels (~>4), sampling rate, buffer memory, trigger capabilities, protocol decoding, probe types, accessories
- Standalone: HP/Agilent, Tektronix
- PC-based: Saleae Logic, LogicPort, USBee, LeCroy LogicStudio, DigiView, sigrok (open source)
Logic Analyzer: Example
Protocol Analyzer

- Real-time, non-intrusive monitoring/capturing/decoding of wired communications
 - HW "man in the middle" to avoid any OS/SW contention/overhead on host
 - Some also support data injection, measurements
- Total Phase Beagle (USB, I2C, SPI) and Komodo (CAN)
- LeCroy Voyager (USB 2.0/3.0)
- International Test Instruments (USB 2.0, PCIe 1.1)
- OpenVizsla (USB), http://openvizsla.org
- Daisho (Ethernet, USB 3.0, HDMI), http://osssmann.blogspot.com/2013/05/introducing-daisho.html
Protocol Analyzer: Example
Bus Pirate

- Open source tool to interface with serial devices
 - SPI, I2C, 1-Wire, LCD, MIDI, MCU/FPGA programming, bit bang
- Basic logic analyzer/digital decoding functionality (slow)
- http://dangerousprototypes.com/docs/Bus_Pirate
USB-to-Serial Adapter

- Converts logic level asynchronous serial to USB Virtual COM Port
 - → TXD = Transmit data (to target device)
 - ← RXD = Receive data (from target device)
 - ↔ DTR, DSR, RTS, CTS, RI, DCD = Control signals (often unused)
- Easily connects to PC, Mac, Linux w/ suitable drivers
- Ex.: FTDI FT232, CP2102, PL2303, Adafruit FTDI Friend
- Many embedded systems use UART as debug output/root shell
 - Ex.: Exploitee.rs Wiki (formerly GTVHackers), www.exploitee.rs
USB-to-Serial Adapter: Example

- Apex STB236 Set Top Box
 - Visually identify connector
 - Oscilloscope to determine baud rate (115.2kbps)
- USB-to-Serial adapter
- Bootloader + U-Boot
USB-to-Serial Adapter: Example 2

-- STB222 Lite Primary Bootloader 0.1-3847, NI (04:00:34, Feb 17 2009)
-- Andre McCurdy, NXP Semiconductors

Device: PNX8335 M1
Secure boot: disabled, keySel: 0, vid: 0 (expecting 2)
Poly10: 0x00000000
RNG: enabled
RSA keyhide: enabled
UID: 0000000000000000
AES key: 00000000000000000000000000000000
KC status: 0x00000000
Flash config: 7 (omni: 8bit NAND), timing: 0x0C
CPU clock: 320 MHz
DRAM: 200 MHz, 1 x 1 64MByte 16bit device (SIF0): 64 MBytes
NAND: RDY polling disabled
NAND: (AD76) Hynix SLC, pagesize 512, blocksize 16k, 64 MBytes
NAND 0x00020000: valid header
NAND 0x00020000: valid image
aboot exec time: 179602 uSec

U-Boot 1.2.0.dev (Secondary Bootloader) (Jul 31 2009 - 02:53:01)

CPU: PNX????
Secure boot: disabled
DRAM: 64 MB
NAND: nCS0 (force asserted legacy mode)
NAND: Hynix 64MiB 3,3V 8-bit
NAND 0x02a3c000: bad block
NAND 0x030bc000: bad block
NAND 0x03478000: bad block
NAND 0x0385c000: bad block
Board Opts: SCART PAL
Splash: done
u-boot startup time so far: 1012 msec
Hit any key to stop autoboot: 1 ... 0
STB225v1 nand#
Software Defined Radio

- Communication system where digital signal processing is used to implement radio/RF functions
 - Ex.: Mixers, filters, amplifiers, modulators/demodulators, detectors
 - RF front end + general purpose computer to receive/transmit arbitrary radio signals
- Primary toolset for RF/radio hacking
 - Visualize RF spectrum (spectrum analyzer)
 - Modulate/demodulate/filter raw signal
 - Decode/inject data
- Ex.: RTL-SDR, HackRF One, Blade RF, RFIDler
Software Defined Radio: Example

- Verisure Wireless Home Alarm
 - Discover frequency and modulation scheme using GQRX and HackRF
 - Capture raw signal and import into Baudline for visualization
 - Create custom flowgraph using GNU Radio to capture, filter, demodulate, and slice signal into binary data
Software Defined Radio: Example 2

http://funoverip.net
Manipulation / Injection
Soldering Iron

- Provides heat to melt solder that physically holds components on a circuit board
- Range from a simple stick iron to a full-fledged rework station
 - Interchangeable tips, adjustable temperature, hot air reflow
- Weller, Metcal, Hakko, Radio Shack (!)
Soldering Accessories

- Solder: Thin gauge (0.032" or 0.025" diameter), ~60/40 Rosin core or lead-free alloy
- Desoldering Tool ("Solder Sucker"): Manual vacuum device that pulls up molten solder into its chamber
- Desoldering Braid: Wicks molten solder up into braid
- Flux: Assists in heat transfer and removal of surface oxides
- Tip cleaner: Helps to keep the solder tip clean for even heat distribution. Ex.: Sponge, tip tinner
ChipQuik

- Allows the quick and easy removal of surface mount (and some through hole) components
- Primary component is a low-melting temperature alloy (less than 200°F)
 - Reduces the overall melting temperature of the solder
 - Enables you to just lift/slide the part easily off of the board
- www.chipquik.com
Rework Station

- Hot air convection, infrared, laser
- Allows easier removal and reflow of individual SMD components
 - Especially BGA (Ball Grid Array) & CSP (Chip Scale Package)
- Nozzles for different package types/mechanical footprints
- Weller, Metcal, Hakko, ZEVAC, Zephyrtronics
Device Programmer

- Used to read/write most devices that contain memory
 - Standalone or internal to MCU
 - Ex.: Flash, E(E)PROM, ROM, RAM, PLD/CPLD, FPGA
- Some devices can be manipulated in-circuit
- Many support > 90k (!) different devices
- Few extraction/read-out/access mechanisms exist
 - Security bit/fuse, password protection
- EE Tools, Xeltek, BP Microsystems, Data I/O
Debug Tools

- Off-the-shelf HW tools designed for interaction w/ target device
 - Can provide chip-level control (single step, access registers)
 - Extract program code or data
 - Modify memory contents
 - Affect device operation on-the-fly
- Either vendor-specific or industry standard (JTAG)
- Many different types available
 - Ensure tool supports your target architecture
 - Find out what vendor recommends for legitimate engineers
Debug Tools: JTAG

- Bus Blaster (open source)
 - http://dangerousprototypes.com/docs/Bus_Blaster
- SEGGER J-Link
 - www.segger.com/debug-probes.html
- H-JTAG
 - www.hjtag.com/en
- RIFF Box
 - www.jtagbox.com
- Many Others
Debug Tools: Example

- Ford Electronic Control Units (ECUs) (2013)
 - For Charlie Miller & Chris Valasek
 - Complete firmware extraction to help understand typical CAN traffic/functionality
 - http://illmatics.com/car_hacking.pdf
 - Used standard, off-the-shelf development tools
 - Freescale CodeWarrior for S12(X) v5.1 + P&E Multilink USB Rev. C
Debug Tools: Example 2

![Image of debug tools and a computer screen showing memory and command interface]

The image shows a debug tool setup with a circuit board, a oscilloscope, and a computer screen displaying a memory screen and command interface. The memory screen shows hexadecimal values, and the command interface includes commands for running, stopping, and halting the program.
JTAGulator

- Joe Grand
- Assisted discovery of on-chip debug interfaces (JTAG & UART)
- Supports up to 24 connections to unknown points on target circuit board, adjustable target voltage (1.2V-3.3V), input protection, firmware upgradable
- www.jtagulator.com
JTAGulator: Example

- Linksys WRT54G v2
- Broadcom BCM4712
- IDCODE = 0x1471217F
GoodFET

- Travis Goodspeed
- Open source tool for interfacing/hacking chips & target devices
- Different FW and Python scripts for different functionality
 - Ex.: JTAG, SPI, I2C, AVR, PIC, Chipcon/Nordic/Atmel RF
GoodFET: Example

- Travis Goodspeed & Michael Ossmann
- Reprogram firmware in Chipcon C1110 MCU (8051)
- Change IM-Me from $16 toy to a pocket spectrum analyzer

```
$ goodfet.cc flash specan.hex
Flashing specan.hex
Buffering 0000 toward 000000
Buffering 0100 toward 000000
Buffering 0200 toward 000000
Buffering 0300 toward 000000
Flashing buffer to 0x000000
Flashed page at 000000
...
```
Facedancer

- Travis Goodspeed
- Emulate USB devices for host-based testing/fuzzing/analysis
 - http://goodfet.sourceforge.net/hardware/facedancer21/

Finds devices supported by the OS
$ python3 umap.py -P /dev/ttyUSB3 -i

Fuzz a HID device class
$ python3 umap.py -P /dev/ttyUSB3 -f 03:00:00:C

Try to identify the operating system
$ python3 umap.py -P /dev/ttyUSB3 -0

Run a single fuzz test case
$ python3 umap.py -P /dev/ttyUSB3 -s 03:00:00:C:16
Die Datenkrake

- Dmitry Nedospasov & Thorsten Schroeder
- Low cost, open source development & attack platform
 - ARM Cortex-M3 + FPGA
- Fuzzing, glitching, protocol analysis
- Requires off-the-shelf IDEs for FW & FPGA development
- www.datenkrake.org
ChipWhisperer

- Colin O'Flynn
- Collection of open source HW/SW tools for side channel, timing, and glitching attacks
- Supports AES-128/256 key extraction via EM/power analysis
- www.chipwhisperer.com
Acoustic Microscopy

- Target placed into bath of DI water or alcohol
 - Serves as liquid coupling medium to transfer sound waves to target
- Ultrasound emitted into target (15-300MHz)
- Return echoes are captured (reflection)
- Transmission through the target is measured (thru scan)
Acoustic Microscopy 2

- Typically used for non-destructive failure analysis & reliability testing/verification of ICs, components, packaging, wafers
 - Can identify air gaps/voids, delamination, cracks/mechanical stress, counterfeits
- We can use it for examining through epoxy encapsulation
 - Identify key components, connections, or locations
X-Ray (2D)

- X-rays passed through target and received on detector
 - All materials absorb radiation differently depending on density, atomic number, and thickness
- Provides a composite image of all layers in target
X-Ray (2D) 2

- Typically used during PCB assembly (component placement/solder quality) or failure analysis (troubleshooting defective features)
- We can use it for general PCB inspection and examining through epoxy encapsulation
 - Can get clues of PCB fabrication techniques, component location, layer count, hidden/embedded features
X-Ray (2D): Examples
X-Ray (3D/CT)

- Computed Tomography (CT)
 - A series of 2D X-ray images post-processed to create cross-sectional slices of the target
 - X-ray beam rotated 360° in a single axis around the target
 - Post-processing results in 2D slices that can be viewed in any plane (X, Y, Z)
 - Can be manipulated with 3D modeling software
X-Ray (3D/CT) 2

- Typically used for complex inspection and failure analysis of PCBs, component packaging, solder ball/joint quality
- We can use it to extract individual layers of a PCB
 - Results may vary based on layer count, inter-layer thickness, copper weight, substrate composition
X-Ray (3D/CT): Example

- PCB layer extraction, www.grandideastudio.com/portfolio/pcbdtt/
Scanning Electron Microscope

- Uses electrons instead of light to form an image
 - Wide range of magnifications, better quality than optical microscope
- Provides an entire chip-level and gate-level view of the device
 - May need to remove other layers before access to gate structures
- Voltage contrast microscopy
 - Gate charges and voltage levels shown as brightness variations
 - Useful for failure analysis/comparisons and signal/bus monitoring
FIB (Focused Ion Beam)

- Send a focused stream of ions onto the surface of the chip
- Beam current/velocity and optional use of gas/vapor changes the function:
 - Imaging
 - Cutting
 - Deposition
Now What?
Now What?

- Create a hardware hacking lab (if you haven't already)
- Keep an eye out for new tools by hackers and industry
- Collaborate with others who may have complementary skills/tools
- Use these tools to validate your product's security or to better understand attack techniques
Questions?