NIST Cybersecurity Framework and PCI DSS

Troy Leach
Chief Technology Officer
PCI Security Standards Council

Emma Sutcliffe
Senior Director, Data Security Standards
PCI Security Standards Council
PCI Security Standards Council

We Help Secure Payment Data

- Global, cross-industry effort to increase payment security
- Industry-driven, flexible and effective standards and programs
- Helping businesses detect, mitigate and prevent criminal attacks and breaches
PCI Security Standards and Programs
Standards, Training and Certification Programs, Educational Resources

Payment Equipment
Payment Software
Merchant & Payment Service Provider Environments

Certification – Equipment, Service Providers, Assessors, Investigators
Training – Assessors, Investigators
PCI DSS and the NIST Cybersecurity Framework

- Applies wherever payment card data is stored, processed or transmitted
- Provides a baseline of technical and operational requirements
- Focused on the protection of payment card data

- Voluntary Framework for managing cybersecurity-related risk
- Consists of standards, guidelines, and best practices
- Promotes the protection and resilience of critical infrastructure
Standard vs. Framework

Build and Maintain a Secure Network and Systems
1. Install and maintain a firewall configuration to protect cardholder data
2. Do not use vendor-supplied defaults for system passwords and other security parameters

Protect Cardholder Data
3. Protect stored cardholder data
4. Encrypt transmission of cardholder data across open, public networks

Maintain a Vulnerability Management Program
5. Protect all systems against malware and regularly update anti-virus software or programs
6. Develop and maintain secure systems and applications

Implement Strong Access Control Measures
7. Restrict access to cardholder data by business need to know
8. Identify and authenticate access to system components
9. Restrict physical access to cardholder data

Regularly Monitor and Test Networks
10. Track and monitor all access to network resources and cardholder data
11. Regularly test security systems and processes

Maintain an Information Security Policy
12. Maintain a policy that addresses information security for all personnel

Diagram:
- **Function Unique Identifier**
- **Function**
- **Category Unique Identifier**
- **Category**

<table>
<thead>
<tr>
<th>ID</th>
<th>Identify</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID.AM</td>
<td>Asset Management</td>
</tr>
<tr>
<td>ID.BE</td>
<td>Business Environment</td>
</tr>
<tr>
<td>ID.GV</td>
<td>Governance</td>
</tr>
<tr>
<td>ID.RA</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>ID.RM</td>
<td>Risk Management Strategy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PR</th>
<th>Protect</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR.AC</td>
<td>Access Control</td>
</tr>
<tr>
<td>PR.AT</td>
<td>Awareness and Training</td>
</tr>
<tr>
<td>PR.DS</td>
<td>Data Security</td>
</tr>
<tr>
<td>PR.IP</td>
<td>Information Protection Processes and Procedures</td>
</tr>
<tr>
<td>PR.MA</td>
<td>Maintenance</td>
</tr>
<tr>
<td>PR.PT</td>
<td>Protective Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DE</th>
<th>Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE.AE</td>
<td>Anomalies and Events</td>
</tr>
<tr>
<td>DE.CM</td>
<td>Security Continuous Monitoring</td>
</tr>
<tr>
<td>DE.DP</td>
<td>Detection Processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS</th>
<th>Respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS.RP</td>
<td>Response Planning</td>
</tr>
<tr>
<td>RS.CO</td>
<td>Communications</td>
</tr>
<tr>
<td>RS.AN</td>
<td>Analysis</td>
</tr>
<tr>
<td>RS.MI</td>
<td>Mitigation</td>
</tr>
<tr>
<td>RS.IM</td>
<td>Improvements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RC</th>
<th>Recover</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC.RP</td>
<td>Recovery Planning</td>
</tr>
<tr>
<td>RC.IM</td>
<td>Improvements</td>
</tr>
<tr>
<td>RC.CO</td>
<td>Communications</td>
</tr>
</tbody>
</table>
Mapping Relationships

Case 1: Subset of
Case 2: Intersects with
Case 3: Equivalent to
Case 4: Superset of
Case 5: Not related to
Observations from Mapping Exercises

- Both PCI DSS and the NIST CSF provide a comprehensive approach to security.
- Mapping results are not exact matches.
- Controls used to meet PCI DSS can contribute to meeting CSF, and vice versa.
- Meeting either PCI DSS or the CSF does not result in the other being met.
Example Mappings – Equivalence

<table>
<thead>
<tr>
<th>NIST CSF (ID.AM-3)</th>
<th>PCI DSS (Req. 1.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Organizational communication and data flows are mapped</td>
<td>• Network diagram that identifies all connections to/from CDE (Req. 1.1.2)</td>
</tr>
<tr>
<td></td>
<td>• Diagram that shows all cardholder data flows (Req. 1.1.3)</td>
</tr>
</tbody>
</table>
Example Mappings – Subset

<table>
<thead>
<tr>
<th>NIST CSF (PR.DS-7)</th>
<th>PCI DSS (Req. 6.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The development and testing environment(s) are separate from the production environment</td>
<td>• Separate development/test environments from production environments, enforce with access controls (Req. 6.4.1)</td>
</tr>
<tr>
<td></td>
<td>• Separation of duties between development/test and production environments (Req. 6.4.2)</td>
</tr>
</tbody>
</table>
Example Mappings – Intersections

<table>
<thead>
<tr>
<th>NIST CSF (PR.DS-2)</th>
<th>PCI DSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Data-in-transit is protected</td>
<td>• Use strong cryptography to protect cardholder data during transmission over open, public networks (Req. 4)</td>
</tr>
<tr>
<td></td>
<td>• Use strong cryptography to protect authentication credentials during transmission (Req. 8.2.1)</td>
</tr>
</tbody>
</table>
• Integrity checking mechanisms are used to verify hardware integrity (PR.DS-8)

• Devices that capture payment card data are protected from tampering and substitution
Reverse View

NIST CSF

• Integrity checking mechanisms are used to verify hardware integrity (PR.DS-8)

• Physical devices and systems within the organization are inventoried (ID.AM-1)

• All users are informed and trained (PR.AT-1)

PCI DSS (Req. 9.9)

• Devices that capture payment card data are protected from tampering and substitution
Example Mappings – Not Related

- **CSF Subcategories**
 - **Availability**
 - Adequate capacity to ensure availability is maintained (PR.DS-4)
 - Systems operate in pre-defined functional states to achieve availability (PR.PT-5)
 - **Recovery communications**
 - Public relations are managed (RC.CO-1)
 - Reputation after an event is repaired (RC.CO-2)
The Mapping Process

- PCI SSC is the first organization to work with NIST to undertake an exhaustive study on the extent to which another standard fulfills CSF elements
- Process requires a thoughtful approach to mapping
Lessons Learned

- PCI DSS and NIST CSF both offer comprehensive security coverage
- Complementary approaches; one does not supersede need for the other
- NIST mapping shows one-way relationship from the Reference to the CSF
- Achieving CSF outcomes may not result in payment data being protected
And PCI is Evolving.....
Dynamic Data
Real-time Analysis
Corporate Awareness
Persistent Controls
Improved Authentication
Better Design
DSS Revision and Future Updates

2018 Revision

Next major release
What We’ve Heard During Open Feedback Period
Objective Based Requirements

BENEFITS
- Suited to organizations with mature risk management programs and robust governance structures
- Supports adoption of cutting-edge technologies – organizations finding new ways to meet their security needs

CHALLENGES
- Broader variance between implementations: Greater effort required to validate if security requirements are met
- More open to subjective interpretation when evaluating level of security assurance
DSS Potential Goals

- Design security requirements to include objective/outcome-based assessment
- Establish culture for on-going security practices
- Enhance the validation methodology
Security Approach for Different Audiences

Objective-based Testing

Traditional Security Testing

Tools & Guidance

Breadth and variance of target audience

Maturity of risk management approach to security
Expected 2020 Publication with additional RFCs starting in Fall 2019
Opportunity to Provide Feedback on DSS

New RFC Process for 2019:
Consistency in approach
Transparency in changes
RFC Logistics
Ways to Reduce Footprint

Reduce the need or ability to store or transmit cardholder data

- Business process
- Outsource
- Simplify
- Render Unreadable
Apply what you have learned

- Evaluate existing critical assets and properly label their priority to your organization
- Evaluate industry mappings to reduce duplicity of internal assessment
- Stay connected and informed as these frameworks constantly change to reflect new risk
Thank You!