CONCURRENT BEHAVIOUR ANALYSIS: RESILIENT INDICATORS OF EMERGENT EXPLOITS

Dennis R. Moreau, Ph.D.
RSA / Office of the CTO
Static Indicators Grow Stale Quickly

MW behavior changes faster than indicators propagate
MW Exhibit Many Detectable Behaviors …

But we can’t know which behaviors a priori … so, we should watch lots of different sensors
and nervous MW behaves differently

You can’t fool ALL of the sensors, All of the time … so, we should watch lots of different of sensors

and MW evolves … rapidly

... so, we watch for degree of inconsistency, anomaly, outliers, change ... rather than scoring on static patterns
<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Source Code</th>
<th>Additional Details</th>
</tr>
</thead>
</table>
| 69 | invoke-static {v2, v3, v4}, Lcom/android/system/admin/xfclicl.c::>cOlClOoo(III)Ljava/lang/String; | | - Time: 170899
 - param0: openConnection
 - param1: null
 - Return:
 - openConnection
 - public java.net.URLConnection java.net.URL.openConnection() throws java.io.IOException |
| 73 | invoke-virtual {v0, v2, v3}, Ljava/lang/Class::>getMethod(Ljava/lang/String; [Ljava/lang/Class;,)Ljava/lang/reflect/Method; | | - Reflective invoke: java.net.URL.openConnection
 - Return:
 - Time: 170918
 - param0: http://www.androfox.com/load.php
 - param1: null
 - Return:
| 78 | move-result-object p0 | | |
| 79 | try_end_71: const/16 v0, 0xb | | |
| 80 | const/16 v1, -0x90 | | |
| 81 | const/16 v3, 0x32 | | |
OBAD.A Endpoint Behavior

Strings
- eCzyf2UidGhilw==
- su -c 'id'
- read

<table>
<thead>
<tr>
<th>Position</th>
<th>Instruction</th>
<th>Meta Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>try_start_0.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>invoke-static {}.getRuntime().getRuntime();</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>move-result-object v0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>const/16 v1, 0x12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>const/16 v2, 0xa</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>const/16 v3, -0x1c</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>invoke-static {v1, v2, v3}, Lcom/android/system/admin/OcoolClc;->cOlcOo(III)java/lang/String;</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>move-result-object v1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>invoke-static {v1}, Lcom/android/system/admin/ocOlClCo;->ooOolC(Ljava/lang/String;):java/lang/String;</td>
<td>- Time: 144500
- param0: [B@a06aa5f0
- param0: su -c 'id'
- param0: 7375202D632027696427
- Return:
- su -c 'id'
- Time: 144500
- param0: eCzyf2UidGhilw==
- Return:
- su -c 'id'
- Time: 144551
- param0: su -c 'id'
- Return:
- Process[pid=2369]</td>
</tr>
<tr>
<td>11</td>
<td>move-result-object v1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>invoke-virtual {v0, v1}, Ljava/lang/Process;->exec(Ljava/lang/String;):Ljava/lang/Process;</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>move-result-object v6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>invoke-virtual {v6}, Ljava/lang/Process;->getInputStream(Ljava/io/InputStream;</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>move-result-object v7</td>
<td></td>
</tr>
</tbody>
</table>
Obad.A: C2 Behaviors

► Send text messages. Parameters contain number and text. Replies are deleted.
► PING.
► Receive account balance via USSD.
► Act as proxy (send specified data to specified address, and communicate the response).
► Connect to specified address (clicker).
► Download a file from the server and install it.
► Send a list of applications installed on the smartphone to the server.
► Send information about an installed application specified by the C&C server.
► Send the user’s contact data to the server.
► Remote Shell. Executes commands in the console, as specified by the cybercriminal.
► Send a file to all detected Bluetooth devices.
BLYPT

- iexplore.exe
- jp2launcher.exe
- java.exe

JAVA_EXPLOYT.H

- 300e7c35-2ca05d71

<Compromised Site>

- Download
- Execute
- Inject

EXPLORER.EXE
Behavior Analysis
Network Behavior: Anomalous Web Interaction (SilverTail)
Network Behavior - Characterize

- Characterize
 - Sequence
 - Graph Measures
 - Frequency
 - Dynamics
 - ...

Example

Anonymized use-case from a customer

This user did A-B-C-A-B-C-A-B-C-A-B-C-A-B-C-A.

<table>
<thead>
<tr>
<th>Expected</th>
<th>Refrequency</th>
<th>Frequency</th>
<th>Anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>A -> B Transition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.2791</td>
<td>9.81287</td>
<td>1.59744</td>
<td>0.260049</td>
</tr>
<tr>
<td>62</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5.9662</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| B -> C Transition |
960.428	72.6302	5.4925	0.415358
962	71	5	1
1	2	3	4
6.50075			

| C -> A Transition |
2504.13	859.581	295.065	101.286
2529	830	287	102
1	2	3	4
0.676293			
EP Behavior: Injection (ECAT)

OS Loading
Address FixUp, Link Resolution

A
- .dll on Disk

Simulated Loading

B
- .dll in RAM

B'
- anticipated .dll image

ECAT test: B ≠ B’ triggers alert
EP Behavior & Inconsistency:

Behavior

- Hooking and Consequent Action
- Privilege Escalation
- Log Sequences
- Resource Consumption
- ...

Anomaly

- Disk vs. RAM
- Threads vs. Processes
- Registry API vs. Hive Structure
- FS vs. Shadow FS
- Currency of Updated Lists
- ...

Ref: http://maec.mitre.org/about/docs/MAEC_Conficker_Issues_Challenges.pdf
Example: <Signal to Noise> ++

- Single Sensor - Baselining Xtime, Xpopulation, Xtrans
 - Change over Time from User “normal”
 - Difference from Population “normal”
 - Difference from Session type “normal”
 - Difference for an accession “device”
 - Clustering – RT vs. Batch
 - Sensor signal mining across parameter spaces
 - …
Behavior Sensor Examples

► Web Session Navigation Patterns - Silvertail
► Netflow and DNS Lookup Patterns – LosAlamos PathScan
► Traffic and flow patterns – NetWitness Parsers + Meta + Sandbox Based Behaviors
► Endpoint Anomalous State and Behavior – Ex. Injection + Network Activity - ECAT
► Kernel Hooking - AutoVAC – Texas A&M
► Hybrid Static/Dynamic + Recipe Driven SandBox Analysis – Joe Security, Joe Sandbox
Concurrent Analysis
Concurrent Behavior Analysis

► Behavior: Sensed Change ▽ Time vs. Matched String
► Coherence: Inconsistency vs. Signature
► Dimension: Multiple Aspects vs. Single Aspect Alerts
► Composition: Anomalies vs. Focused Indicator Scoring Threshold
Opportunity: Multi-modal Behavior
Ex. NW Behavior + EP Behavior

Composed Higher Confidence Behavioral Indicator

Orchestrate linkage on Asset ID : IP, MAC, UUID, Hosting Stack, ...

!(EP) ⇒ !(NW)
Examples: <Signal to Noise> ++

Behavior Outlier
- http get
- Count Per Source
- Seasonality Filter
- Hodrick-Prescott

Behavior Sequence
- DNS
- Lateral Event
- Recon Event
- Whitelist

Concurrent Behavior
- VPN Device
- Ground Speed Event
- New Destination Event
- Score Filter
- 5000
- 200
- 100
- Intersect
- Rank Filter
- 1

State
Complex Emergent Behavior: Labeling & Propagation

► Track User, Asset, Transaction profiles – label suspicious entities based on modeled constraints
► Taint subsequent interactions – suspicion propagation.
► Reputation as a operational signal
 ► Action-ability: Score indicates where to look first.
 ► Action-ability: Adjust sensors thresholds and possibly, Shields!
 ► Action-ability: Confirm mitigation/remediation.
Ex. Complex Emergent Behavior Characterization

- Clustering Dimensions for Graphs
 - Describing Behavior Graphs (comparison)
 - Frequency Domain
 - Complexity Measures and Metrics
 - Shape Measures
 - …
 - Association across aspects on common entities
 - EP Identifiers/Account/Service/Process …
 - User Identifiers
 - Session Identifiers
 - Application/Service/Site Identifiers
 - …
Ex. Complex Emergent Behavior Recognition

► Can leverage sensor specific mining with no change

► As We Approach Mining Across Sensors – New Issues
 ► Bayesian, SVM, Neural Networks, Decision Trees, …
 ► But need to understand base data and model statistics
 ► Signal and Variable Dependence
 ► Underlying Distribution
 ► Data and Model Interactions
<maecPackage:Analyses>
<maecPackage:Analysis id="maec-example-ana-1" method="dynamic" type="triage">
<maecPackage:Summary>Dynamic (behavioral) triage.</maecPackage:Summary>
<maecPackage:Findings_Bundle_Reference bundle_idref="maec-example-bnd-1"/>
<maecPackage:Tools> <maecPackage:Tool id="analysis-tool-1">
 <cyboxCommon:Name>Anubis</cyboxCommon:Name>
 <cyboxCommon:Vendor>IsecLab</cyboxCommon:Vendor>
</maecPackage:Tool></maecPackage:Tools>
</maecPackage:Analysis>
<maecPackage:Analysis id="maec-example-ana-2" method="dynamic" type="triage">
<maecPackage:Summary>Dynamic (behavioral) triage.</maecPackage:Summary>
<maecPackage:Findings_Bundle_Reference bundle_idref="maec-example-bnd-2"/>
<maecPackage:Tools> <maecPackage:Tool id="analysis-tool-2">
 <cyboxCommon:Name>ThreatExpert</cyboxCommon:Name>
 <cyboxCommon:Vendor>Symantec</cyboxCommon:Vendor>
</maecPackage:Tool></maecPackage:Tools>
</maecPackage:Analysis>
</maecPackage:Analyses>
Multi-Behavior MAEC 4.0

<maecPackage:Findings_Bundles>...

<cybox:Associated_Objects> <cybox:Associated_Object id="maec-anubis_to_maec-obj-1">
 <cybox:Properties xsi:type="FileObj:FileObjectType">
 <FileObj:File_Name>oembios.exe</FileObj:File_Name>
 <FileObj:File_Path>C:\WINDOWS\system32\</FileObj:File_Path>
 </cybox:Properties>
 <cybox:Name xsi:type="maecVocabs:SynchronizationActionNameVocab-1.0">create mutex</cybox:Name>
</cybox:Associated_Object>

<cybox:Associated_Objects> <cybox:Associated_Object id="maec-anubis_to_maec-obj-2">
 <cybox:Properties xsi:type="WinMutexObj:WindowsMutexObjectType">
 <MutexObj:Name>__SYSTEM__91C38905__</MutexObj:Name>
 </cybox:Properties>
</cybox:Associated_Object>

<cybox:Associated_Objects> <cybox:Associated_Object id="maec-anubis_to_maec-obj-3">
 <cybox:Properties xsi:type="WinRegistryKeyObj:WindowsRegistryKeyObjectType">
 <WinRegistryKeyObj:Key>software\microsoft\windows nt\currentversion\winlogon</WinRegistryKeyObj:Key>
 <WinRegistryKeyObj:Hive>HKEY_LOCAL_MACHINE</WinRegistryKeyObj:Hive>
 <WinRegistryKeyObj:Values>
 <WinRegistryKeyObj:Value>
 <WinRegistryKeyObj:Name>userinit</WinRegistryKeyObj:Name>
 <WinRegistryKeyObj:Data>C:\WINDOWS\system32\userinit.exe,
 C:\WINDOWS\system32\oembios.exe</WinRegistryKeyObj:Data>
 </WinRegistryKeyObj:Value>
 </WinRegistryKeyObj:Values>
 </cybox:Properties>
</cybox:Associated_Object>

</maecPackage:Bundle>
Multi-Indicators in MAEC 4.0

- MAEC Bundle
 - Beaconing Behavior
 - URL
 - IP Addr.
 - Residency Behavior
 - File
 - Reg. Key

- Manual Dyn/Static Analysis
- Automatic Dyn/Static Analysis

Outputs:
- SNORT
- OVAL
Open Questions for Concurrent Behavioral Analysis
Open: Multiple Time Bases

- Smart sensors can introduce non-deterministic delays
 - Lack of Clock Synchronization
 - Buffering prior to recognition … and alert
 - Sandbox execution (usually has a timeout)
 - Batch analytics can be long running
 - Non-linear analytic approaches (UTM attack permutations over vulnerability graphs)
- …
- Need correlation that is less sensitive to clock de-sync
- Need to reason using partial ordering or relaxation of dependencies – transformation (ex. f-domain)
- Need interval logics for reasoning about time
Open: Policy/Filter Conflict …

Sensors can be filters … and affect visibility

- Policy distributed across different interacting PDPs
- Policy expressed in many different policy languages and logics: Snort, YARA, Parsers ..
- Potential policy interactions: What does FW + IPS +WF mean? Same as WF + IPS + FW?
- Some devices fail open, some fail closed under load

Beyond UTM
Open: Automated Reasoning About Complex Emergent Behavior

- Belief & Plausibility Evolution Across Sensors
 - Dempster Schaffer revisited – Fusion of belief constraints from different sources
 - Explicit provision from negative (conflicting) evidence
 - Posture + Behavior + Reputation + Multi-Anomaly
- Transferable Belief Models
- Theory of Hints
- ...

RSA CONFERENCE EUROPE 2013
Immediate Application

► Improve Signal to Noise Ratio on Anomaly Alerts
 ► Score = (S1 + S2 + … Sn)/n \(Si := \) degree of anomaly
 ► Very simplistic combination: \(0 \leq Si \leq 1 \), 0 so, \(0 \leq \text{Score} \leq 1 \)
 ► Can add decay for aging of sequence of anomaly scores
 ► Can add variance from average for sequence anomaly

► Additional Aspect
 ► Use anomalous traffic alert to trigger endpoint consistency scan (dll, reg, filesystem, threads, hooks…)
 ► Use anomalous endpoint score to trigger packet capture and deeper traffic analysis
Summary

► Emergent malware is increasingly dynamic and increasingly coopts legitimate and operationally essential (hard to block) characteristics (legitimate IPs, Services, APPs, Protocols, …)

► Reasoning across massive volumes of otherwise legitimate static indicators is probably not the answer

► Multi-aspect concurrent behavior analysis allows us to automatically improve anomaly indications

► Multi-aspect concurrent behavior analysis allows us to establish a more comprehensive, and therefore actionable context
Thank you!

Dennis R. Moreau, Ph.D.
RSA / Office of the CTO

dennis.moreau@rsa.com
www.rsa.com
Appendix
Ex. Complex Emergent Behavior Clustering

- Mean shift clustering
- Principal Component Analysis (PCA)
- Bilateral filtering
- Expectation Maximization – Shape Sensitive
- K-Means – Similar Extents
Ex. Streaming Clustering

► Classification of Data Streams – Micro Clustering
► Ensemble Classification
► On Demand Classification
► Lite Weight Classification – adaptive granularity fluctuating data rates
► ANNCAD - adaptive nearest neighbor clustering for data streams
► SCALLOP - scalable clustering on decision patterns – continuous rule updates
Ex. Streaming Clustering

► Velocity Density Methods
 ▶ Dimensional evolution – drifting normal to avoid false positives

► Stream Cubes
 ▶ High dimensionality distance measures under adaptive means

► Realtime synopsis (descriptions)
 ▶ Stability under load and change in real time p-stable
 ▶ Equi-depth multi dimensional histograms – distance is a centroid distance

► Streaming k-means
Ex. Streaming Analytic Technique

Adaptation of Clustering Techniques

- **Continuous K-Means**
- Good for identifying clusters as they emerge and merge
 - Tracked over time to support cluster change analysis
 - Not precise enough to drive splits, so:

```
    Stream-ish over data
```

```
Clustering over abstracts of data: On Demand
```
Streaming vs. Batch Analytics

Real-time – protection plausible